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ABSTRACT

Introduction: Measurement errors can seriously affect quality of clinical practice

and medical research. It is therefore important to assess such errors by conduct-

ing studies to estimate a coefficients reliability and assessing its precision. The

intraclass correlation coefficient (ICC), defined on a model that an observation is a

sum of information and random error, has been widely used to quantify reliability

for continuous measurements. Sample formulas have been derived for explicitly

incorporation of a prespecified probability of achieving the prespecified precision,

i.e., the width or lower limit of a confidence interval for ICC. Although the concept

of ICC is applicable to binary outcomes, existed sample size formulas for this case

can only provide about 50% assurance probability to achieve the desired precision.

Methods: A common correlation model was adopted to characterize binary data

arising from reliability studies. A large sample variance estimator for ICC was

derived, which was then used to obtain an asymmetric confidence interval for ICC

by the modified Wald method. Two sample size formulas were derived, one for

achieving a prespecified confidence interval width and the other for requiring a

prespecified lower confidence limit, both with given assurance probabilities. The

accuracy of the formulas was evaluated using numerical studies. The utility of the

formulas was assessed using example studies.

Results: Closed-form formulas were obtained. Numerical study results demon-

strated that these formulas are fairly accurate in a wide range of scenarios. The

examples showed that the formulas are simple to use in design reliability studies

with binary outcomes.

Discussion: The formulas should be useful in the planning stage of a reliability

study with binary outcomes in which the investigator wishes to obtain an estimate

of ICC with prespecified precision in terms of width or lower limit of a confidence

interval. It is no longer justified to conduct reliability studies on the basis of sub-



optimal formulas that provide only 50% assurance probability.

KEYWORDS: Agreement; Common Correlation Model; Confidence Intervals;

Interrater; Reproducibility.
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Chapter 1

INTRODUCTION

The act of measurement is an essential part of any scientific inquiry. In con-

trast to many natural science disciplines, research in the medical, epidemiologi-

cal and health sciences often relies on measurements obtained through subjective

judgement. The need for reliable and valid measures in these situations has been

clearly demonstrated by Marshall et al. (2000) who reported that compared to ran-

domized trials of Schizophrenia using published measuring scales, those studies

which used unpublished measuring scales were 30 to 40% more likely to report

significant treatment results. Section 2.2.2 of the International Conference on Har-

monization (ICH, 1998) E9 has emphasized the importance of using reliable and

valid measures in clinical trials.

It is well known that assessment of reliability is the first necessary step. This

is because before one can assess whether an instrument is measuring what is in-

tended to be measured (i.e. valid), one must first gather evidence that the scale is

measuring in a reproducible fashion.

Despite a large literature on statistical methods for reliability as reviewed by

Shoukri (2010) and Shoukri and Donner (2009), there is a paucity of feasible for-

mulas for calculating sample size for reliability studies with binary measurements.

This may have contributed to the situation that rarely can one identify reliability

studies with pre-specified sample sizes in the literature.
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The objective of this thesis is to fill in this gap by proposing sample size for-

mulas for reliability studies with binary measurements aimed at quantification of

reliability.

In this introductory chapter we begin with the concept of reliability, followed

by a section presenting a brief summary of the relationship between validity and

reliability. In Section 1.3, we define reliability coefficient as intraclass correlation

coefficient (ICC) for continuous measurements, followed by Section 1.4 where we

introduce ICC as an reliability index for binary measurements. Section 1.5 dis-

cusses a scope of the thesis explaining why we have decided to focus on sample

size estimation for reliability studies with binary measurements. Section 1.6 lays

out the organization of the thesis.

1.1 Reliability

Any measurement inherently consists of random and systematic errors. The con-

cept of reliability is a fundamental way to reflect the amount of error. Reliability

concerns the extent to which an instrument measures in a reproducible fashion the

same individuals on different occasions, or by different observers, or by similar

tests. For measures with concrete meaningful units, e.g., a bathroom scale, an indi-

cation of measurement error of ±1kg would be sufficient for one to conclude that

measurements obtained using these scales would be reliable for assessing weight

gain of adults, but unreliable for assessing growth of an infant. However, a subjec-

tive scale with±2 units alone provides no information on whether it can be used to

distinguish individuals unless we have some idea about the likely range of scores.

To overcome this difficulty, reliability is usually defined as a ratio of the variability

between individuals to the total variability in the scores. By so defined, it reflects

the extent to which a measurement instrument can differentiate among individu-

als. From this definition, it is also clear that reliability of an instrument depends
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not only on its characteristics, but also on the underlying context. In other words,

there is no such a thing as “the reliability of the scale”, but rather “the reliability of

the scale with this population”. This implies that a measurement scale may need

to be assessed for reliability in a research study even if it has been evaluated in

another population, unless it can be assured that the two populations are similar.

1.2 Validity

The validity of a measurement scale refers to the relationship of the measured score

to its purported underlying attribute. Operationally, validity can be defined as

the proportion of the observed variance that reflects variance in the construct the

measure was intended to measure (Carey and Gottesman, 1978).

Specifically, validity may be defined as decomposing the variability of observa-

tions as:

σ2
obs = σ2

construct + σ2
systematic + σ2

random.

and thus:

validity =
σ2

construct
σ2

obs

in comparison to

reliability =
σ2

construct + σ2
systematic

σ2
obs

.

Thus, it is clear that

reliability > validity.

Thus, reliability places an upper limit on validity. Note that the validity of a

scale also depends on the population of interest and the specific context.
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1.3 Intraclass Correlation Coefficient as Reliability Index

Calculation of reliability is possible only if repeated observations on each of N

subjects are derived by the same observer over a period of time in a way that en-

sures blindness (intra-observer reliability), or randomly selected from a pool of ob-

servers who independently observe the subject at one point in time (inter-observer

reliability). An additional situation is that observations are made by randomly se-

lected observers from a pool of observers, each of which observes the subject at one

of several randomly selected time points over a span of time in which the charac-

teristic of interest of the subjects is unlikely to change. This will result in test-retest

reliability.

The underlying model for observations corresponding to the above three types

of reliability can be written as

Yij = µ + si + eij,

for i = 1, 2, . . . , N, denoting subjects, and j = 1, 2, . . . , n, denoting repeated obser-

vations. The usual assumptions for estimation purposes are that si are indepen-

dently and identically distributed (iid) with mean 0 and variance σ2
s , and eij are

iid having mean 0 and variance σ2
e . The sets {si} and {eij} are also assumed to be

mutually independent. This model is commonly referred to as one-way random

effects model (Bartko, 1966).

In a typical inter-observer reliability study in which the n separate measure-

ments correspond to the values recorded by each of the observers, the above model

represents the “no observer effect” situation. Despite its simplicity, this model is

of considerable interest when the focus is directed at the reliability of the measure-

ment process itself, where reliability is defined as

ρ =
σ2

s
σ2

s + σ2
e
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and commonly referred to as the (within subject) intraclass correlation coefficient

(ICC) since Fisher (1925). In the present context, it indicates that ρ× 100% of vari-

ance in the scores results from “true” variance among subjects. Thus, the higher the

value of ρ, the easier it is to distinguish or tell subjects apart based on the measure-

ments. As pointed out by Bartko (1966), ρ can also be interpreted as a correlation

between any two observations within a subject.

Statistical methods for the ICC in one-way random effects model have been

reviewed by Donner (1986), with an emphasis on procedures for point and confi-

dence interval estimation, as well as hypothesis testing for nonzero values of ICC.

Due to the severe left skewness of the sampling distribution, inference for the ICC

is usually conducted on a transformed scale first suggested by Fisher (1925), and

thus commonly known as Fisher’s Z-transformation, given by

Z =
1
2

ln{[1 + (n− 1)ρ]/[1− ρ]}.

Using the ICC as reliability index for more complex designs is discussed by Shrout

and Fleiss (1979) and McGraw and Wong (1996). Sample size requirements for

reliability studies with continuous measurements have been given by Zou (2012).

1.4 ICC for Binary Measurement

Assessment of reliability for binary measurement has historically begun with con-

sideration of the inter-observer agreement, due largely to the chance corrected

agreement index proposed by Cohen (1960), which is given by

κ =
πo − πe

1− πe

where π0 is the observed probability of agreement and πe is a hypothetical ex-

pected probability of agreement by chance. Strictly speaking, κ is an index for

reliability, not agreement (Kraemer et al., 2002; de Vet et al., 2006). These two terms
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have sometimes been used interchangeably, primarily because of Cohen’s κ for

inter-rater agreement.

Fleiss (1971) generalized Cohen’s kappa to the case where each of a sample

of subjects is rated on a nominal scale by the same number of raters, but where

the raters rating one subject are not necessarily the same as those rating another

subject. Essentially, this corresponds to the assumption of “no observer effects”,

and “is of main interest where the main emphasis is directed at the reliability of the

measurement process itself, rather than at potential differences among observers”

(Landis and Koch, 1977). This situation will also be the focus of this thesis.

Despite the popularity since its inception, the kappa coefficient is defined with-

out a population model until Landis and Koch (1977) who adopted a one-way

random effects model for categorical data. In the light of this model, the intraclass

correlation coefficient is virtually identical to Fleiss’s kappa coefficient, with the

difference arising from using N − 1 instead of N in the calculation of mean square

between subjects.

Let N be the total number of subjects, n be number of ratings each subject re-

ceived. Under the one-way random effects model for binary measurement (=1 Yes;

0 No)

Yij = µ + si + eij,

where i = 1, 2, . . . , N denotes subjects and j = 1, 2, . . . , n denotes raters. Let Yi de-

note the number of 1s subject i received. The mean square within subjects (MSW)

is given by

MSW =
1

Nn(n− 1)

N

∑
i=1

Yi(n−Yi)

and the mean square between subjects (MSB) is

MSB =
1

(N − 1)n

N

∑
i=1

(Yi − np̂)2
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with p̂ denoting overall proportion of 1s, i.e., p̂ = ∑N
i=1 Yi/(Nn) and the ICC

ρ̂ =
MSB−MSW

MSB + (n− 1)MSW

= 1− ∑N
i=1 Yi(n−Yi)

(N − 1)n(n− 1) p̂(1− p̂)

∼= 1− ∑N
i=1 Yi(n−Yi)

Nn(n− 1) p̂(1− p̂)
.

Further insight on the ICC for binary measurements has been provided by

Kraemer (1979). For example, under the population model, it is possible to identify

factors which influence its magnitude, which in turn suggest strategies to increase

reliability of the measurement (Kraemer et al., 2002).

A reliable inference procedure, specifically for constructing confidence interval

estimation for ICC with binary data was not available until Zou and Donner (2004)

derived the closed form variance estimator for ρ̂. Simulation results by Zou and

Donner (2004) suggest that a modified Wald-type confidence interval procedure

performs well over a wide range of parameter combinations. The issue of sample

size estimation for reliability studies with binary measurement has usually been

discussed for the case of Cohen’s κ, with the exception of Donner and Rotondi

(2010) who proposed an iterative procedure based on the Goodness of fit (Donner

and Eliasziw, 1992). In addition to inconvenience in computation, the resulting

sample size can only assure to achieve the pre-specified precision with 50% prob-

ability.

1.5 Scope of the Thesis

There exists a large literature on statistical methods for reliability studies. Even the

intraclass correlation coefficient has a variety of versions to quantify reliability in

different situations (Shrout and Fleiss, 1979; McGraw and Wong, 1996).
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The primary focus of this thesis is on reliability studies whose objective is to

assess the reliability of the measurement process itself as discussed by Landis and

Koch (1977) and Kraemer (1979).

The specific objective of this thesis is to derive and evaluate closed-form sam-

ple size formulas for planning reliability studies focusing on the estimation of ICC.

The model that we rely on is the one-way model as discussed by Landis and Koch

(1977). In contrast to approaches currently available in the literature (e.g. Donner

and Rotondi 2010), we follow the approach by Zou (2012) who explicitly incor-

porated a pre-specified assurance probability of achieving a desired precision in

estimating ICC. Two advantages of our approaches are as follows. First, calculat-

ing sample size on the basis of ICC estimation can directly focus on precision of

the estimates, rather than the probability of observing values of ICC that are more

extreme than the estimate when the true value of ICC is zero. Second, incorporat-

ing explicitly the assurance probability in the calculation can increase the chance

of achieving the desired precision.

1.6 Organization of the Thesis

This thesis consists of six chapters. Chapter 2 provides a review for measures of

reliability and the corresponding statistical methods when the measurements are

binary, starting from Scott’s (1955) π and Cohen’s (1960) κ for cases of two raters

to ICC for multiple raters (Altaye et al., 2001). In Chapter 3, we first adopt the com-

mon correlation model for correlated binary data to derive a variance estimator

for the resulting ICC estimator, which is followed by derivation of sample size for-

mulas for estimating the ICC with precision and assurance probability. Since the

results in Chapter 3 are asymptotic, we assess small sample properties in Chap-

ter 4. Chapter 5 provides illustrative examples for application of the sample size

formulas. We finish the thesis with Chapter 6 where we present some general con-
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clusions and possible future research directions.
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Chapter 2

LITERATURE REVIEW

We have alluded to in the last chapter that reliability and agreement are related

but distinct concepts. Agreement indicates how close the repeated measurements

are, while reliability suggests whether subjects can be distinguished on the ba-

sis of the measurement. Methods for reliability of binary measurements have a

long history of using the term “agreement”. In this chapter, we review this liter-

ature, beginning with precursors of kappas in Section 2.1, followed by Scott’s π

and Cohen’s kappa. In Section 2.3, we review the literature on intraclass correla-

tion coefficient computed from binary measurements. The relationship between

kappa coefficient and intraclass correlation coefficient is reviewed in Section 2.4.

Relating kappa to ICC is important for understanding the relevance of assessing

reliability in research. We finish this chapter with a review of methods for sample

size estimation, which provides a justification for Chapter 3.

2.1 Precursors of kappa

Methods for reliability of binary measurements have historically originated from

agreement of two raters. Consider a 2 × 2 frequency table in Table 2.1 giving a

binary score to N subjects. Each subject is classified as either positive, denoted as

x=1, or negative, denoted as x=0, by two raters. In the table, nij(i = 1, 2, j = 1, 2)

represents the number of subjects rated in the ith row by rater 1 and jth column
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Table 2.1: Frequency Table for Two Raters Rating N subjects

Rater 2

x=1 x=0 Total

Rater 1 x=1 n11(p11) n12(p12) n1.(p1.)

x=0 n21(p21) n22(p22) n2.(p2.)

Total n.1(p.1) n.2(p.2) N

by rater 2 and pij(i = 1, 2, j = 1, 2) represents the corresponding probability. Both

Fleiss (1975) and Landis and Koch (1975) provide summaries of early agreement

indices arised under this setting.

At first glance of the data collected this way, agreement could be obtained

namely as (n11 + n22)/N, representing the “index of crude agreement” (Rogot and

Goldberg, 1966).

Armitage et al. (1966) also proposed two measurements identical to the index

of crude agreement: mean majority agreement index and mean pair agreement

index.

While Goodman and Kruskal (1979, p.758) claimed that agreement should be

measured as a function of p11 + p22, there are other indices only incorporating p11

or p22 so as to treat positive ratings and negative ratings unequally.

Dice (1945) proposed

SD = p11/ p̄

where p̄ = (p1. + p.1)/2 measures the probability of positive ratings conditional

on at least one of the raters rating positively as well. If one needs to measure the

probability of negative ratings conditional on all the negative ratings, the corre-
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sponding index is

S′D = p22/q̄

where q̄ = (p2. + p.2)/2.

Rogot and Goldberg (1966) simply took the average of SD and S′D and proposed

the index

A2 =
p11

p1. + p.1
+

p22

p2. + p.2
.

A2 ranges from 0, complete disagreement to 1, complete agreement. They also

proposed another index as a function of four conditional probabilities, that is

A1 =
1
4

(
p11

p1.
+

p11

p.1
+

p22

p2.
+

p22

p.2

)
.

The first term p11
p1.

can be interpreted as the probability of rater 2 rating posi-

tive conditional on rater 1 rating positive. A1 has a minimum value of 0 when

there is complete disagreement and a maximum value of 1 when there is complete

agreement.

Armitage et al. (1966) also suggested an agreement index in the form of a stan-

dardized deviation of subjects’ total ratings scores. The index, known as “standard

deviation agreement index (SDAI)”, is given as the square root of

SDAI2 =
N

N − 1
[p11 + p22 − (p11 − p22)

2].

However, since the maximum value of SDAI equals
√

N/(N − 1) only under

the condition that p1. = p.1 = 1/2, SDAI was rescaled to

RSD2 =
p11 + p22 − (p11 − p22)

2

1− ( p̄− q̄)2 (2.1)

which ranges from 0 to unity.
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Goodman and Kruskal (1954) proposed an index noted as λr, for the case when

there are more negative ratings than positive ratings, as

λr =
(p11 + p22)− q̄

p̄
=

2p11 − (p12 + p21)

2p11 + (p12 + p21)
.

It also has a maximum value of 1 with complete agreement, but can reach the

minimum value of −1 whenever a = 0, irrespective of p22. Besides, it has been

noted that λr = 2SD − 1. Thus λr is also feasible for conditional probabilities.

2.2 Chance-corrected Agreement Indices

Since the observed agreement is contributed partly by chance, it is reasonable

to exclude agreement caused by chance in measuring the real agreement. When

marginal probabilities are p1. and p.1 for rater 1 and rater 2 respectively rating sub-

jects as positive, there is a probability of p1. × p.1 that is expected by chance alone.

It is reasonable to exclude this portion to account for agreement.

There exists a natural means to correct for chance. Let Io represent the ob-

served agreement proportion and Ie represent the agreement proportion expected

by chance alone. Io − Ie is then the excess agreement beyond chance and 1− Ie is

the maximum potential excess agreement beyond chance. The index is defined as

a ratio of these two differences,

M(I) =
Io − Ie

1− Ie
.

This M(I) is considered to be the standardized index corrected for chance as a

measurement for agreement. It reaches the maximum value of 1 when there is per-

fect agreement, 0 when the observed agreement and the expected agreement are

numerically same. The minimum value is equal to −pe/(1− pe), which becomes

−1 only when Ie = 1/2. Otherwise its minimum value ranges from −1 to 0.

Following this form, there are many indices in this form as follows.
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2.2.1 Scott’s π

Scott (1955) is among the first to propose an index correcting for chance. The index

was designed under the assumptions of independence and marginal homogeneity.

If xi1 represents the rating outcome from rater 1 for the ith subject, xi2 repre-

sents the rating outcome from rater 2 for the ith subject, and Pr(xi1 = 1) = p1,

Pr(xi2 = 1) = p2, the assumption of marginal homogeneity implies p1 = p2 = p,

meaning two raters have the same probabilities of measuring subjects into the

same categories.

Scott (1955) assumed that in the probability sense, the raters’ rating tendencies

are identical and can be estimated as the average of two raters’ marginal probabil-

ities. Thus, the observed and expected agreement can be written as

Io =
n11 + n22

N
, Ie = p2 + (1− p)2

where p = (2n11 + n12 + n21)/(2N), and Scott’s π can be given by

π =
Io − Ie

1− Ie

=
Io − [p2 + (1− p)2]

1− [p2 + (1− p)2]

=
4(n11n22 − n12n21)− (n12 − n21)

2

(2n11 + n12 + n21)(2n22 + n12 + n21)

2.2.2 Cohen’s Kappa

While Scott’s π assumes marginal homogeneity, Cohen (1960) argued the raters’

different proclivities of ratings should be considered as a source of disagreement

and also corrected for accordingly.

In proposing the kappa statistic, there were no restrictions concerning the marginal

distributions but only independence. The definition of observed agreement is still

defined the same as previously and the expected agreement Ie = n1.
N

n.1
N + n2.

N
n.2
N .
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Cohen’s kappa, which subsequently became one of the mostly commonly applied

statistics for agreement measurement, is given by

κ̂ =
2(n11n22 − n12n21)

(n11 + n12)(n12 + n22) + (n11 + n21)(n21 + n22)

Fleiss et al. (1969) provided an approximate asymptotic variance formula for κ̂,

given by

v̂ar(κ) =
1

N(1− Ie)2×[
2

∑
i=1

p̂ii[1− ( p̂i. + p̂.i)(1− κ̂)]2 + (1− κ̂)2
2

∑
i 6=j

p̂ii( p̂i. + p̂.j)
2 − [κ̂ − Ie(1− κ̂)]2

]
.

Under marginal homogeneity, Cohen’s kappa equals Scott’s π.

There has been a heated debate on κ’s limitations and disadvantages. Kraemer

(1979) clarified that the prevalence of the outcome can alter the results of kappa.

Shrout et al. (1987) considered this to be a desired property, but the dependence on

the true prevalence of the characteristic of interest actually complicates the inter-

pretation of the agreement index, for it is difficult to compare two kappa values

when the prevalences differ between studies.

Another issue was discussed by Feinstein and Cicchetti (1990) and Cicchetti

and Feinstein (1990). Investigators sometimes find a striking paradox that despite

a high crude proportion of agreement Io, the kappa value may be relatively low.

They provided the explanation that if n1. = n2. or n.1 = n.2 is considered to be

perfect balance, this phenomena occurs only when the marginal numbers in a 2

× 2 table are highly symmetrically unbalanced, e.g., n1. is very different from n2.,

or n.1 is very different from n.2. There is also another paradox that unbalanced

marginal totals can produce higher values of kappa than balanced marginal totals.

This situation occurs when n1. is much larger than n2. while n.1 is much smaller

than n.2, or vice versa and is considered as asymmetrical unbalanced marginals.
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In summary, low kappa values may occur despite relatively high Io. Kappa

sometimes increases only because of the departure from the symmetry in the marginal

totals. Vach (2005) attributed those limitations to a consequence of the definition

of kappa whose objective is to correct the crude agreement to the expected agree-

ment by chance. He believed that it makes no sense to criticize kappa for exactly

fulfilling this property and wouldn’t regard the dependence on the marginal totals

as a drawback.

2.2.3 Intraclass Kappa for Two Raters

Kraemer (1979) pointed out that it is difficult to adopt specific strategies to improve

the measurement of agreement for Cohen’s kappa without a clear population char-

acteristic in model. Bloch and Kraemer (1989) proposed an alternative version of

Cohen’s kappa under the assumption that all the raters are characterized by the

same marginal probabilities of rating the subjects into the same category. It is

a simplified version of intraclass kappa for binary responses and multiple raters

based on Kraemer (1979) and Mak (1988) under the assumption of interchange-

ability, that is, the distribution of ratings for each subject is invariant under the

permutation of the raters. This model is known as the common correlation model

(Donner et al., 1981; Donner and Eliasziw, 1992).

When there are two raters only, let xij denote the measurement for the ith sub-

ject rated by the jth rater, as the name suggests, the correlation between any pair

of ratings has the same value of κI , that is,

κI = corr(xi1, xi2) =
cov(xi1, xi2)√

var(xi1)var(xi1)
.

Let the probability of the measurement being positive (xij = 1) be denoted by

pi for the ith subject and p′i = 1− pi. For the population model, let E(pi) = p and

var(pi) = σ2
p.
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Table 2.2: The Theoretical Model for Two Raters (p′i = 1− pi, p′ = 1− p)

Rater 2

xi2 = 1 xi2 = 0 Total

Rater 1 xi1 = 1 E(p2
i ) E(pi p′i) p

xi1 = 0 E(pi p′i) E(p′2i ) p′

Total p p′ 1

The agreement between two raters for the ith subject is p2
i + (1 − pi)

2 with

an expectation of E[p2
i + (1 − pi)

2] = 2σ2
p + p2 + p′2. The random agreement is

p2 + p′2. Thus, according to the chance-corrected index definition, the intraclass

kappa can be defined as

κI =
Io − Ie

1− Ie
=

σ2
p

pp′
.

The theoretical model for the above case where there are only two raters and

binary outcomes are shown in Table 2.2.

In the model for agreement, the intraclass kappa can be expressed as

κI =
E(p2

i )− p2

pp′
.

Hence equivalently, the model as given by Table2.2 can be written in terms of

probabilities of joint responses as

p1(κI) = Pr(xi1 = 1, xi2 = 1) = p2 + p(1− p)κI

p2(κI) = Pr(xi1 = 1, xi2 = 0 or xi1 = 0, xi2 = 1) = 2p(1− p)(1− κI)

p3(κI) = Pr(xi1 = 0, xi2 = 0) = (1− p)2 + p(1− p)κI .

Bloch and Kraemer (1989) also provided the maximum likelihood estimates of
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κI and p. The log likelihood function can be written as

ln[L(p, κI |n11, n12, n21, n22)]

= n11ln(p2 + κI pp′) + (n12 + n21)ln[pp′(1− κI)] + n22ln(p′2 + κI pp′).

After taking partial derivatives with respect to κI and p, setting them to be 0

and solving the equations, the maximum likelihood estimates are given by

κ̂I =
4(n11n22 − n12n21)− (n12 − n21)

2

(2n11 + n12 + n21)(2n22 + n12 + n21)
,

p̂ =
2n11 + n12 + n21

2N

and its asymptotic variance is given by

var(κ̂I) =
1− κI

κI

[
(1− κI)(2− κI) +

κI(2− κI)

2p(1− p)

]
.

As pointed out by Bloch and Kraemer (1989), the MLE of κI applied to two

raters is identical to Scott’s π under the assumption of marginal homogeneity and

independence, and is proved to be identical to the intraclass correlation coefficient

estimator when applied to 0-1 data (Winer, 1971, pp. 294-296). Furthermore, κ̂I

and Cohen’s kappa estimator are asymptotically equivalent (Blackman and Koval,

2000).

If it is assumed that κ̂I is asymptotically normally distributed with mean κI

and standard error SE(κ̂I) =
√

var(κ̂I). The 100(1-α)% confidence interval can

be obtained by the Wald method, κ̂I ± Z1−α/2SE(κ̂I), where Z1−α/2 is the 100(1-

α/2) percentile point of the standard normal distribution. This method has poor

performance even with sample size as large as 100 (Blackman and Koval, 2000;

Donner and Eliasziw, 1992).

Donner and Eliasziw (1992) proposed a confidence interval approach based

on a goodness-of-fit statistic which was shown to perform well in small samples.

Essentially, the approach was to equate the computed chi-square statistic with one
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degree of freedom to the targeted critical value and solve for the two roots as the

upper and lower confidence interval limits. Under the null hypothesis of H0 : κI =

κ0, the equation was given by

χ2
1 =

[n22 − Np̂1(κ0)]
2

Np̂1(κ0)
+

[n12 + n21 − 2Np̂2(κ0)]
2

2Np̂2(κ0)
+

[n11 − Np̂3(κ0)]
2

Np̂3(κ0)
,

equal to the targeted critical value with one degree of freedom at chosen signif-

icance level α, where p̂i(κ0), i = 1, 2, 3 are obtained by replacing p with p̂. The

expressions for the upper and lower 95% confidence interval limits are given by

κU =

(
1
9

y2
3 −

1
3

y2

)2(
cos

θ + 5π

3
+
√

3 sin
θ + 2π

3

)
− 1

3
y3,

κL = 2
(

1
9

y2
3 −

1
3

y2

) 1
2

cos
θ + 5π

3
− 1

3
y3,

where

θ = cos−1
V
W

, V =
1

27
y2

3 −
1
6
(y2y3 − 3y1), W =

(
1
9

y2
3 −

1
3

y2

) 3
2

,

and

y1 =
[n12 + n21 − 2Np̂(1− p̂)]2 + 4N2 p̂2(1− p̂)2

4Np̂2(1− p̂)2(N + 3.84)
− 1,

y2 =
(n12 + n21)

2 − 4(3.84)Np̂(1− p̂)[1− 4p̂(1− p̂)]
2Np̂2(1− p̂)2(N + 3.84)

− 1,

y3 =
n12 + n21 + 3.84[1− 2p̂(1− p̂)]

p̂(1− p̂)(N + 3.84)
− 1.

An alternative procedure that recognizes the property that the variance esti-

mator for κ̂I is a function of κI itself was proposed by Donner and Zou (2002).

Simulation results suggest that this procedure performed equally as well as the

goodness-of-fit method by Donner and Eliasziw (1992).

2.2.4 Connection with Early Agreement Indices

The application of the chance-corrected agreement index form M(I) succeeds in

unifying most of indices introduced in Section 3.1 (Fleiss, 1975).
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The chance-expected value of index SD is estimated as E(SD) = p1.p.1/ p̄ and

M(SD) is then

M(SD) =
SD − E(SD)

1− E(SD)
=

2(p11p22 − p12p21)

p1.p.2 + p.1p2.
,

identical to Cohen’s κ. In addition, since λr = 2SD − 1, M(λr) = κ.

For Rogot and Goldberg’s (1966) A2, its chance-expected value can be estimated

as

E(A2) =
p1.p.1

p1. + p.1
+

p2.p.2

p2. + p.2
,

and M(A2) is then

M(A2) =
A2 − E(A2)

1− E(A2)
=

2(p11p22 − p12p21)

p1.p.2 + p.1p2.
,

identical to Cohen’s κ again.

SDAI’s maximum value doesn’t necessarily equal to 1 with complete agree-

ment, but RSD2 does. If N is large enough to ignore the term 1/N, the chance-

expected value of RSD2 is estimated as

E(ESD2) =
p1.p2. + p.1p.2

1− ( p̄− q̄)2 .

and it is easily checked that M(RSD2) also equals to Cohen’s κ.

2.3 Intraclass Correlation Coefficient

2.3.1 ANOVA Estimator

When subjects are rated by multiple raters, agreement is usually measured by intr-

aclass correlation coefficient. Traditionally, analysis of variance (ANOVA) estima-

tors, which were originally proposed for continuous measurements, can also be

applied to binary and even unbalanced data (Ridout et al., 1999; Landis and Koch,

1977).
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Consider the data collected from a random sample of N subjects rated by vary-

ing sets of raters. Let xij = 1 for a positive rating outcome and xij = 0 for negative

rating outcome. The one-way random effects model is given by

xij = µi + si + eij

where i = 1, 2, . . . , N; j = 1, 2, . . . , ni and {si} are iid with mean 0 and variance σ2
s ,

{ei} are iid with mean 0 and variance σ2
e , {si} and {ei} are independent. It can be

written that E(xij) = p = Pr(xij = 1) and since xij are binary data, σ2 = var(xij) =

p(1− p).

Let δ = Pr(xij = 1, xil = 1) = E(xijxil), for j 6= l, it then shows

δ = cov(xij, xil) + E(xij)E(xil) = ρp(1− p) + p2,

where ρ = (δ − p2)/[p(1− p)]. Then the probability of subjects receiving same

measurements is po = p2 + (1− p)2 + 2ρp(1− p). The chance-expected agreement

can be obtained by substituting ρ = 0 as pe = p2 + (1− p)2. The chance-corrected

agreement index can be given as

ρ =
po − pe

1− pe
.

Thus it is clear that ρ can also be interpretable as a chance corrected index.

For the ANOVA estimator, let

σ2
s = ρp(1− p)σ2

e = (1− ρ)p(1− p),

then σ2 = σ2
s + σ2

e . The corresponding estimator is given by

ρ̂ =
MSB−MSW

MSB + (n̄− 1)MSW
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where

MSB =
1

N − 1

 N

∑
i

x2
i.

ni
−

(
∑N

i xi.

)2

∑N
i ni

 ,

MSW =
1

∑N
i ni − N

[
N

∑
i

xi. −
N

∑
i

x2
i.

ni

]
,

n̄ =
1

N − 1

[
N

∑
i

ni −
N

∑
i

n2
i

∑N
i ni

]
.

These expressions can be simplified in the context of reliability studies where

usually ni = n for all i.

2.3.2 Fleiss-Cuzick Estimator and Mak’s ρ

Ridout et al. (1999) summarized that Fleiss-Cuzick (1979) estimator and Mak’s

(1988) ρ both have a direct probabilistic interpretation.

Let α represent the probability that two measurements are equal when they

come from the same subject, β represent the the probability of two identical mea-

surements when they come from different subjects. It is shown that α = 1− 2p(1−

p)(1− ρ) and β = 1− 2p(1− p), and hence

ρ =
α− β

1− β
.

An unbiased estimator of α for the ith subject is

1− 2xi.(ni − x1.)

ni(ni − 1)
.

Fleiss and Cuzick treated α as a weighted average of these within-group estimators

with weights proportional to ni − 1, while Mak used the unweighted average.

As for β, Fleiss and Cuzick estimated it as 1− 2p̂(1− p̂), where p̂ = (∑ xi.)/ ∑ ni

and the estimator is proposed as

ρ̂FC = 1− ∑N
i x1.(ni − x1.)/ni

(∑N
i ni − N) p̂(1− p̂)

.
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The unbiased estimator of β for the ith and jth subjects is shown to be

xi.xj. + (ni − xi.)(nj − xj.)

ninj

and Mak estimated β as unweighted average a sum of N(N− 1)/2 between-subjects

estimators and the estimator is proposed as

ρ̂M = 1− (N − 1)∑N
i x1.(ni − xi.)/[ni(ni − 1)]

∑N
i (x2

i./n2
i ) + ∑N

i (xi./ni)(N − 1−∑N
i (xi/ni))

2.4 Relationship between ICC and Chance-corrected Indices

Bartko (1966) proposed three different ANOVA models depending on the rater

effects. Fleiss (1975) summarized three models and linked the connection to the

chance-corrected indices. Blackman and Koval (1993) summarized the relationship

between various kappa indices and intraclass correlation coefficients estimated

from ANOVA. We present a brief summary here.

Let

SSb = [4n11n22 + (n11 + n22)(n12 + n21)],

SSw = (n12 + n21)/2,

SSj = (n12 − n21)
2/2N,

SSr = [4n12n21 + (n11 + n22)(n12 + n21)]/2N,

representing between subjects, within subjects, between raters and residual sum of

squares respectively each with N − 1, N, 1 and N − 1 degrees of freedoms (Black-

man and Koval, 1993).

If the potential differences between raters can be ignored, then a one-way ran-

dom effects model can be used. The appropriate estimate of ICC is shown to be
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(Bartko, 1966)

R1 =
MSb −MSw

MSb + MSw

=
4(n11n22 − n12n21)− (n12 + n21)

2 + (n12 + n21)

(2n11 + n12 + n21)(2n22 + n12 + n21)− (n12 + n21)
,

equivalent to Mak’s ρ̂. If N is sufficiently large so that the difference between N

and N − 1 is negligible,

R2 =
MSb −MSw

MSb + MSw

=
4(n11n22 − n12n21)− (n12 − n21)

2

(2n11 + n12 + n21)(2n22 + n12 + n21)
,

which is equivalent to Scott’s π̂ and Bloch and Kraemer’s MLE.

When the raters are considered to be a random sample from a large population,

one should use a two-way random effects model. The appropriate estimate of ICC

is shown to be (Bartko, 1966)

R3 =
MSb −MSr/2

(MSb + MSr)/2 + (MSj + MSr)/N + MSr

=

4n11n22+(n11+n22)(n12+n21)
4N(N−1) − 4n12n21+(n11+n22)(n12+n21)

4N(N−1)
4n12n21+(n11+n22)(n12+n21)

2N(N−1) + (n12+n21)2

2N2 − 4n12n21+(n11+n22)(n12+n21)
2N2(N−1)

.

Again when N is large enough to ignore the difference between N and N − 1,

R3 =

1
N2 (n11n22 − n12n21)

1
2N2 [4n11n22 + (n11 + n22)(n12 + n21) + n2

12 + n2
21]−

1
2N3 [4n12n21 + (n11 + n22)(n12 + n21)]

.

If the term of order 1/N is ignored,

R3 =
2(n11n22 − n12n21)

(n11 + n12)(n12 + n22) + (n11 + n21)(n12 + n21)
,

which is Cohen’s κ̂.
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If the raters are fixed, then a two-way mixed effects model should be used. The

appropriate estimate of ICC is shown to be (Bartko, 1966)

R4 =
MSb −MSr

MSb + MSr

=
2(n11n22 − n12n21)

(n11 + n12)(n21 + n22) + (n11 + n21)(n12 + n22)
.

Thus, Scott’s π, Cohen’s κ and Intraclass kappa can all be interpreted as both

chance-corrected agreement measurements and intraclass correlation coefficients.

The choice of ANOVA model depends on the assumed rater effects. The one-way

effects model assumes no rater difference, implying marginal homogeneity. The

two-way effects model allows differences between raters, implying the marginal

probabilities can be unequal. When the marginal probabilities are equal, the two-

way effects model reduces to the one-way effects model.

Ridout et al. (1999) showed the equivalence of ANOVA estimator and Mak’s ρ.

Fleiss and Cuzick (1979) proved that, when MSB has a divisor N instead of N − 1,

then

ρ̂ =
ρ̂FC

1− (1−ρ̂FC ∑N
i (ni−∑N

i ni/N)2

N(N−1)(∑N
i ni/N)2

and ANOVA estimator and Fleiss-Cuzick estimator are virtually identical with N

large enough.

With the link between chance-corrected agreement indices and ICC, Kraemer

(1979) has elucidated the meaning of ICC, discussing its effect on estimation, pre-

cision and statistical power. Similar discussions can be found in Lachin (2004).

2.5 Sample Size Estimation

As with many science studies, sample size determination is an essential step to

fulfill the study objectives. A study with a too large sample size wastes resources
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while a study with a too small sample size cannot answer the study question with

reasonable certainty.

One type of approaches to calculate sample size is from a hypothesis testing

perspective. A graph of the general relationship between reliability coefficient,

statistical power and sample size when detecting the null hypothesis of a specified

difference in true scores is presented by Lachin (2004). It shows that the sample

size required to maintain the same power increases when the reliability coefficient

decreases. The inflation factors are also listed for corresponding reliability coeffi-

cient values, e.g., when the reliability equals 0.8, 25% extra sample size is needed,

when the reliability is only 0.5, the sample size should be doubled to maintain the

desired level of power.

The asymptotic variance for Cohen’s kappa (Fleiss et al., 1969) made the sample

size calculation feasible. Flack et al. (1988) assumed equal marginal rating probabil-

ities and presented a sample size calculation for two raters and multiple categories

by maximizing the standard error. The sample size is obtained in order that a test

of null hypothesis that kappa is no larger than a certain value has a pre-specified

significance level and power. By maximizing the standard error, this approach can

also be applied to obtain a sample size that gives a targeted kappa’s confidence

interval length.

Cantor (1996) extended this approach by allowing unequal marginal probabili-

ties with two raters and two categories. His approaches allow one to calculate sam-

ple size requirements for either testing the null hypothesis that estimated kappa

equals a certain value, or testing if two kappas estimated from two independent

samples are equal with desired significance level and power.

On the base of common correlation model, a goodness- of-fit approach (Don-

ner and Eliasziw, 1992) was applied to facilitate sample size calculation with pre-

specified power. It follows from that the goodness-of-fit statistic has one degree
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of freedom non-central chi-square distribution under the alternative hypothesis

H1 : κ = κ1 with non-centrality parameter

λ(1) = N
3

∑
i=1

[pi(κ1)− pi(κ0)]
2

pi(κ0)
.

If 1− β(1, λ, α) denotes the power of the goodness-of-fit statistic, then the sam-

ple size N can be determined using tables of the non-central chi-square distribu-

tion (Haynam et al., 1970) to ensure that power exceeds a pre-specified level. The

formula of sample size to conduct a two-sided test with significance level α and

power 1− β(1, λ, α) is shown as

N = λ(1, 1− β, α)×{
[p(1− p)(κ1 − κ0]

2

p2 + p(1− p)κ0
+

2[p(1− p)(κ1 − κ0]
2

p(1− p)(1− κ0)
+

[p(1− p)(κ1 − κ0]
2

(1− p)2 + p(1− p)κ0

}−1

,

where λ(1, 1− β, α) is the tabulated non-centrality parameter (Haynam et al., 1970).

Note that in this one degree of freedom case, the value of λ(1, 1− β, α) is the same

of (Z1−α/2 + Z1−β)
2 where Z1−α/2 and Z1−β are the critical values of the standard

normal distribution corresponding to α and β.

Altaye et al. (2001) generalized the common correlation model and the goodness-

of-fit approach to multiple raters by applying the joint probability function first

proposed by Bahadur (1961) and later reparameterized to an expression in terms of

positively rating probability instead of correlation by George and Bowman (1995).

Similar ideas have been adopted to extend the goodness-of-fit sample size formula

to multiple raters. More detailed derivation of the model will be introduced in the

next chapter, as the common correlation model is the basis on which we derive the

variance and sample size formulas.

Shoukri et al. (2004) provided a solution concerning efficient allocation when

the product of the number of subjects and the number of raters is fixed. The sample

size calculated minimizes the variance of the estimate of intraclass kappa. It has
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been recommended that with the acceptable level of reliability coefficient, two or

three measurements for each subject is reasonable.

However, it is generally considered that the reliability studies are designed to

estimate the level of agreement and results of the studies are often reported in

terms of estimates of agreement instead of hypothesis testing. The specification of

the alternative hypothesis testing level is difficult in practice. Besides, rejection of

the null hypothesis is not informative, since researchers need to know more than

the fact that the agreement is not caused by chance. As confidence intervals are

considered to be more informative than a single estimate, another type of approach

from the precision perspective seems to be consistent with the trend.

Among those approaches, Donner (1999) discovered that after solving confi-

dence intervals from the goodness-of-fit statistic, the interval width depends only

on the total number of subjects N, total number of discordant pairs of ratings

n12 + n21, the observed success rate p̂ and the probability of coverage (1 − α).

One can estimate sample size needed to ensure the estimated confidence inter-

val width is less than a pre-specified value by replacing p̂ with anticipated value

p, n12 + n21 replaced with the expected value from the common correlation model

for two raters, given by Np2(κ1) = 2Np(1− p)(1− κ1).

Another formula also from precision perspective is provided by Donner and

Rotondi (2010) for multiple raters. After pre-specifying the targeted agreement

level, the lower confidence interval limit and the overall success rate, an itera-

tive procedures can be adopted to determine the minimum sample size so that a

one-sided 95% confidence interval has an expected lower bound. However, those

existent approaches implicitly achieve a pre-specified precision with 50% chance,

which will be shown from the evaluation study in Chapter 4.

The above issue has lead to our proposal in the next chapter of sample size

formulas that explicitly incorporates both precision and assurance probability.
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Chapter 3

DERIVATION OF SAMPLE SIZE FORMULAS

3.1 Introduction

In the planning of a reliability study, the researcher is interested in how many sub-

jects need to be recruited in order to estimate reliability with reasonable precision.

This chapter derives the sample size formulas that explicitly incorporate both the

precision and assurance probability. In section 3.2, the common correlation model

underlying the estimation of the the ICC is introduced. The point estimate of the

ICC, its variance and confidence interval are introduced. In section 3.3, two sam-

ple size formulas based on the model introduced in section 3.2 are derived to have

desirable pre-specified assurance probability characteristics.

3.2 Common Correlation Model with Multiple Raters

Under the same notations used previously that xij represents the binary measure-

ment assigned from the jth rater (j = 1, 2, ..., n) to the ith subject (i = 1, 2, ..., N)

and π = P(xij = 1) represents the underlying success rate for all the n raters,

a model specifically for correlated binary data was firstly proposed by Bahadur

(1961) under the assumption of interchangeability. Note that when this assump-

tion is in doubt, the Cochran’s Q-statistic test can be performed to test no rater bias,

as illustrated by Fleiss (1973). Letting Xi = ∑N
j=1 xij representing the total rating
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scores for the ith subject, the joint probability of measurements can be expressed

as (Bahadur, 1961)

P(Xi = xi) =(
n
xi

)
πxi(1− π)n−xi [1 + ∑

i<j
ρZiZj + ∑

i<j<k
ρ3ZiZjZk + . . . + ρnZ1Z2 . . . Zn]

where

Zi =
xi − π

[π(1− π)]
1
2

,

ρ2 = ρ = E(ZiZj), . . . , ρn = E(Z1Z2 . . . Zn).

In interrater agreement studies, the parameter of interest is ρ, which is shown

(Fleiss and Cuzick, 1979) to be equal to the ICC obtained from a one-way random

ANOVA model applied to dichotomous data. The correlation between any two

ratings by the same rater, ρ is defined as

ρ =
E(xijxik)− π2

π(1− π)
for j 6= k.

Using maximum likelihood estimation method to estimate parameters in the

joint probability function could be attempted. However as n increases, the num-

ber of parameters needed to be estimated proliferates rapidly and this method

becomes challenging.

As shown in Altaye et al. (2001) and Donner and Rotondi (2010) later work

resorts to a reparameterization presented by George and Bowman (1995). The joint

probability of measurements is then expressed in terms of success probabilities

rather than correlations:

P(Xi = xi) =

(
n
xi

) n−xi

∑
u=0

(−1)u
(

n− xi

u

)
λxi+u,
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where λk = P(xi1 = 1, xi2 = 1, . . . , xik = 1), λ0 = 1 and the maximum likelihood

estimate of λk is given by (Altaye et al., 2001)

λ̂k =
∑n−k

u=0 (
n−u

k )mn−u

N(n
k)

where mj represents the number of subjects whose total rating scores xi equals

j (j = 0, 1, . . . , n).

By applying the expression provided by Altaye et al. (2001)

λk = πk + ρ(1− π)
k−1

∑
j=1

πk−j,

the joint probability of measurements can be written as (Zou and Donner, 2004)

Pr(X = x) =


ρ(1− π) + (1− ρ)(1− π)n x = 0(

n
x

)
(1− ρ)πx(1− π)n−x 1 6 x 6 n− 1

ρπ + (1− ρ)πn x = n

and ρ must satisfy

max
[
− (1− π)n

(1− π)− (1− π)n , − πn

π − πn

]
6 ρ 6 1.

Note that this model has been adopted by Donner et al. (1981) in the context of

designing cluster randomization trials.

This model is more general than the one by Altaye et al. (2001). To see this,

consider the case of n = 3, where the joint probability of measurements reduce to

p0 = Pr(Xi = 0) = (1− π)3 + 3ρπ(1− π)2 − ρ3[π(1− π)]
3
2

p1 = Pr(Xi = 1) = 3π(1− π)2 − 3ρπ(1− π)(2− 3π) + 3ρ3[π(1− π)]
3
2

p2 = Pr(Xi = 2) = 3π2(1− π)2 + 3ρπ(1− π)(1− 3π)− 3ρ3[π(1− π)]
3
2

p3 = Pr(Xi = 3) = π3 + 3ρπ2(1− π) + ρ3[π(1− π)]
3
2
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which can be summarized in Table 3.1. When there are only two raters , it further

reduces to the well-known common correlation model for two raters Bloch and

Kraemer (1989). This model can be reparameterized to (Donner and Rotondi, 2010)

P(Xi = 0) = (1− π)3 + ρπ[(1− π)2 + (1− π)]

P(Xi = 1) = 3π(1− π)2(1− ρ)

P(Xi = 2) = 3π2(1− π)(1− ρ)

P(Xi = 3) = π3 + ρπ(1− π2).

Table 3.1: Data Layout for Three Raters

Category Ratings Frequency Probability

0 (0, 0, 0) m0 p0

1 (0, 0, 1), (0, 1, 0), (1, 0, 0) m1 p1

2 (0, 1, 1), (1, 1, 0), (1, 0, 1) m2 p2

3 (1, 1, 1) m3 p3

Total N 1

Since the observed frequencies mj (j = 0, 1, . . . , n) follow a multinomial distri-

bution with parameters (N, pj (j = 0, 1, . . . , n)), the reliability coefficient, ICC, is

defined as (Kraemer, 1979)

ρ =
λ− π2

π(1− π)

where

π =
∑n

j=1 jpj

n
, λ =

∑n
j=2 j(j− 1)pj

n(n− 1)
,

and the maximum likelihood estimates are shown to be

ρ̂ =
λ̂− π̂2

π̂(1− π̂)
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where

π̂ =
∑n

j=1 jmj

nN
, λ̂ =

∑n
j=2 j(j− 1)mj

nN(n− 1)
.

By applying moment generating function and delta method, the variance for-

mula of ρ̂ is proposed as (Zou and Donner, 2004)

var(ρ̂) =
1− ρ

N
×{

2
n(n− 1)

−
[

3− 1
π(1− π)

]
ρ +

n− 1
n

[
4− 1

π(1− π)

]
ρ2
}

. (3.1)

For confidence intervals, the commonly applied Wald method produces upper

and lower confidence interval limits as

ρ̂± Zα/2

√
v̂ar(ρ̂)

where Zα/2 is the upper α/2 quantile of the standard normal distribution. How-

ever, in studies by Donner and Eliasziw (1992) and Altaye et al. (2001), it was

shown that Wald method performs poorly especially when the sample size is small,

say less than 100, or when π and ρ are extreme values, likely the result of forced

symmetry to construct limits. A second approach equates the observed Pearson

χ2 statistic to the critical value of χ2
(1) distribution at the pre-specified significance

level and then solved for two admissible roots as the confidence limits. Never-

theless, the iterative procedures are rather time-consuming and complicated. An

alternative approach that inverts the modified Wald test (Lee and Tu, 1994; Donner

and Zou, 2002) is to solve the cubic equation

(ρ̂− ρ)2 = Z2
α/2v̂ar(ρ̂).

By replacing π̂ for π and ρ̂ for ρ to obtain v̂ar(ρ̂), the equation above can be rewrit-

ten as

aρ3 + bρ2 + cρ + d = 0
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where

a =−
Z2

α/2

N
n− 1

n

[
4− 1

π(1− π)

]
b =

{
Z2

α/2

N

[
n− 1

n
(4− 1

π(1− π)
) + (3− 1

π(1− π)
)

]
− 1

}

c =−
{

Z2
α/2

N

[
3− 1

π(1− π)
+

2
n(n− 1)

]
− 2ρ̂

}

d =
Z2

α/2

N
2

n(n− 1)
− ρ̂2

and upper and lower (1− α)× 100% confidence interval limits can be obtained as

the two admissible roots of the above cubic equation. When a = 0, it becomes a

quadratic equation and confidence interval limits are

ρL = max(−1,
−c−

√
c2 − 4bd

2b
),

ρU = min(
−c +

√
c2 − 4bd

2b
, 1).

When a 6= 0, the confidence interval limits are the two roots that are within the

range of -1 and 1, that is

ρL = max(−1,− b
3a

+ 2
√
−βcos

arccos α√
−β3

+ 2π

3

),
ρU = min(− b

3a
+ 2
√
−βcos

arccos α√
−β3
− 2π

3

 , 1),

where

α = − b3

27a3 −
d
2a

+
bc

6a2 ,

β =
c

3a
− b2

9a2 .
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3.3 Derivation of Sample Size Formulas

When considering the sample size requirement for reliability studies, one’s interest

often lies in whether the estimated agreement level exceeds a certain threshold

ρL. Several qualifiers may be used to describe a particular level of agreement. A

commonly used set of qualifiers are provided by Landis and Koch (1977), where

ρ < 0 is labelled ‘poor’, ρ 6 0.2 ‘slight’, ρ 6 0.4 ‘fair’, ρ 6 0.6 ‘moderate’, ρ 6 0.8

‘substantial’, and ρ > 0.8 ‘almost perfect’ agreement. The goal here is to derive a

formula for sample size N to ensure a pre-specified 1− β assurance probability, by

fixing the lower confidence limit of estimated reliability coefficient ρ̂L for multiple

raters to be no less than a pre-specified value ρL. Here the approach follows that

of Zou (2012) and starts by writing

1− β =Pr(ρ̂L > ρL) (3.2)

=Pr
[

ρ̂− Zα

√
var(ρ̂) > ρL

]
.

where var(ρ̂), as derived by Zou and Donner (2004), was given in Equation (3.1).

Let

f (ρ) = (1− ρ)

{
2

n(n− 1)
−
[

3− 1
π(1− π)

]
ρ +

n− 1
n

[
4− 1

π(1− π)

]
ρ2
}

,

which is the numerator of the variance formula for ρ. The equation (3.1) can be

written as

1− β = Pr
[

ρ̂− Zα

√
f (ρ)/N > ρL

]
= Pr

[
ρ̂ 6 −ρL − Zα

√
f (ρL)/N

]
. (3.3)

By central limit theorem, we know

ρ̂ ∼ N
[

ρ,
f (ρ)
N

]
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so that equation (3.3) simplifies to

1− β = Pr

[
ρ̂− ρ√
f (ρ)/N

6
−ρ− ρL − Zα

√
f (ρL)/N√

f (ρ)/N

]
.

After solving the above equation, the sample size N can be derived as

N =

[
Zα

√
f (ρL) + Zβ

√
f (ρ)

ρ− ρL

]2

(3.4)

where Zβ is the upper β quantile for the standard normal distribution. Also the

assurance probability 1− β can be calculated when given N, ρL, π and ρ0:

Zβ =
−ρ− ρL − Zα

√
f (ρL)/N√

f (ρ)/N
.

If a minimum level of precision is required by restricting the confidence inter-

val, the minimum sample size can be computed for a two-sided confidence interval

of ρ̂ such that each tail is no larger than a pre-specified width ω with a pre-specified

assurance probability 1− β.

Under the above requirements, the equation can be written as

1− β = Pr
[

Zα/2

√
var(ρ̂) 6 ω

]
,

which implies

1− β = Pr

[√
f (ρ̂) 6

ω
√

N
Zα/2

]
.

To derive the distribution of
√

f (ρ̂), the delta method is applied as

var(
√

f (ρ̂)) =
(√

f (ρ)
)′ 2

var(ρ̂)

=
1

4N
[ f ′(ρ)]2
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where f ′(ρ) is the first-order derivative of f (ρ) with respect to ρ, given by

f ′(ρ) =− 3
n− 1

n

[
4− 1

π(1− π)

]
ρ2

+ 2
{

3− 1
π(1− π)

+
n− 1

n

[
4− 1

π(1− π)

]}
ρ

− 2
n(n− 1)

− 3 +
1

π(1− π)
.

Again by central limit theorem,√
f (ρ̂) ∼ N

(√
f (ρ),

1
4N

[ f ′(ρ)]2
)

.

Now solve for N asymptotically:

1− β = Pr(Z 6
ω
√

N/Zα/2 −
√

f (ρ)
| f ′(ρ)|/2N

),

N =

√ f (ρ) +
√

f (ρ) + 2ωZβ| f ′(ρ)|/Zα/2

2ω/Zα/2

2

. (3.5)

If ρ, ω, N and π are previously known, the assurance probability 1− β can be

calculated as

Zβ =
ω
√

N/Zα/2 −
√

f (ρ)
| f ′(ρ)|/2

√
N

.

Sample size formulas are now derived to allow requirements on both preci-

sion and assurance probability. Equation (3.4) gives the sample size that assures

the lower (1 − α)100% one-sided confidence interval limit is no less than a pre-

specified value ρL with 1− β assurance probability, and Equation (3.5) gives the

sample size that assures the width of (1− α)100% two-sided confidence interval is

no larger than a pre-specified value ω with 1− β assurance probability. To prove

the sample size formulas have satisfactory performance, evaluation studies are

carried out in next chapter.
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Chapter 4

EVALUATION OF THE FORMULAS

4.1 Introduction

The results in Chapter 3 are derived under asymptotic conditions. Therefore a

numerical study was conducted to study performance under practical situations.

Both exact evaluation and simulation studies can be used to provide empirical

estimation of the sampling distribution of the estimators. Therefore this chapter

adopts this technique to evaluate empirical sample size formulas performance.

In Section 4.2 of this chapter, the parameter selection, the background param-

eter settings and criteria to evaluate the performance of the estimators are deter-

mined. Then detailed procedures and methods to carry out both exact evaluation

and simulation studies are discussed. Section 4.3 reports and discusses the evalu-

ation and simulation results. A conclusion of this chapter is given in Section 4.4.

4.2 Study Design

4.2.1 Parameter Selection and Data Generation

There are various sample size formulas in the literature dealing with the two rater

case (Cantor, 1996; Donner and Eliasziw, 1992) and in recent years several formu-

las have been extended to multiple raters (Altaye et al., 2001; Donner and Rotondi,
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2010). Consider a scenario in which a group of n raters, here, assumed to be be-

tween two and five raters, each assigns dichotomous measurements to a total of

N subjects. The aim is to measure reliability with desired precision, either using a

pre-specified lower confidence interval limit ρL, or a pre-specified half confidence

interval width ω, with the nominal significance level α and the nominal assurance

probability 1 − β. The raters have the same tendency given by probability p to

assign subjects a positive measurement and within each subject, the true intraclass

correlation coefficient ρ represents the correlation between any two measurements.

The significance level α is set always equal to 0.05 so that the confidence intervals

are either 95% one-sided lower confidence interval or 95% two-sided confidence

interval depending on the sample size formulas.

Values for the true reliability coefficient ρ were selected based on the sugges-

tions from Landis and Koch (1977) indicating slight (0.00 to 0.20), fair (0.21 to 0.40),

moderate (0.41 to 0.60), substantial (0.61 to 0.80) and almost perfect (0.81 to 1.00)

agreement. Since in many clinical investigations an ICC of 0.6 is expected to be the

minimal acceptable level, the values for ρ were chosen to be 0.6, 0.7 and 0.8, and re-

spectively, the values of pre-specified lower confidence interval limit ρL were set to

be 0.4, 0.6, and 0.6, or alternatively the values of the half pre-specified confidence

interval widths were 0.2, 0.1 and 0.2, respectively. Under those conditions, the per-

formances of both the general cases with wide confidence intervals and extreme

cases with narrow confidence intervals can be compared.

As for the values of the probability of raters assigning a positive measurement,

due to the fact that both the values of p and 1− p result in the same agreement

level, only the p values of 0.1, 0.3 and 0.5 are considered.

Also, in this evaluation study, sample sizes calculated from the formulas under

50% assurance probability level are compared to those from Donner (1999) and

Donner and Rotondi (2010) to show that their sample size approach implicitly only
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incorporate 50% assurance probability. The sample size formulas are evaluated

under 80% assurance level as well.

For the cases of two and three raters, an exact evaluation study (Zou et al., 2009)

was carried out to assess all the possibilities. For each parameter combination, the

required minimum sample size N was calculated at the first step. Then with the

total sample size N, every possible allocation to n + 1 categories of total measure-

ment scores can be listed, that is, every subject has a total measurement score from

0 (every rater assigned a negative measurement), 1, . . . , to n (every rater assigned

a positive measurement). Under each allocation, the corresponding confidence in-

terval can be constructed to evaluate the sample size formulas.

For the cases of four and five raters, since an exact evaluation based on all the

possibilities is very computationally intensive, a simulation study is conducted

instead. Under each parameter combination, with the minimum sample size N

obtained from the formulas, a total of 100 random sets of numbers were generated

following a multinomial distribution with probabilities obtained from the joint

probability density function. Similarly, confidence intervals can be constructed

to assess the performance of the sample size formulas. All numerical studies were

performed using R Version 3.2.5 (R Core Team, 2016).

4.2.2 Confidence Interval Methods Compared

The traditional confidence intervals calculated by the Wald method is shown to

perform poorly (Donner and Eliasziw, 1992; Altaye et al., 2001). An alternative

approach to obtain the confidence interval is to invert a modified Wald test (Rao

and Mukerjee, 1997) so that the confidence interval limits are two admissible roots

of the cubic equation in terms of ρ. In this numerical study, these two approaches

are referred as “Wald” and “M. Wald” and their performance in terms of coverages

and assurance probabilities were compared.
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4.2.3 Procedures and Evaluation Criteria

Given each combination of parameters (n, p, ρ, ρL or ω, α, β), by applying the sam-

ple size formulas proposed in the last chapter, the minimum sample size N can

be calculated. With the sample size N, every possible allocation of sample size to

n + 1 categories of total measurement scores can be listed for the evaluation study,

or alternatively random sets of numbers can be generated for a simulation study.

The numbers of subjects assigned a total measurement score follows a multino-

mial distribution with probabilities obtained from the joint probability equation

introduced in the last chapter

Pr(X = x) =


ρ(1− π) + (1− ρ)(1− π)n x = 0(

n
x

)
(1− ρ)πx(1− π)n−x 1 6 x 6 n− 1

ρπ + (1− ρ)πn x = n

Then when n = 3 the probability for every particular condition can be calculated

through the joint density

f (m0, m1, m2, m3; N, p0, p1, p2, p3) =
N!

m0!m1!m2!m3!
pm0

0 pm1
1 pm2

2 pm3
3 , (4.1)

m0 + m1 + m2 + m3 = N,

p0 + p1 + p2 + p3 = 1.

Under every condition, 100(1− α)% confidence intervals (L, U) can be obtained

by using the Wald and modified Wald method.

In both the evaluation and simulation studies, the comparison of generated re-

sults to the “true” values provides a measure of performance. This is achieved

by assessing the confidence intervals for the selected parameters. The empirical

confidence intervals under every condition were obtained to measure how often

the true intraclass correlation coefficient ρ could be correctly predicted by an in-
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terval based on either Wald or modified Wald methods. This measurement was

quantified by calculating coverage probabilities.

For this study, coverage is defined as (Zou et al., 2009)

Coverage =
S

∑
i=1

N!
m0i!m1i! . . . mni!

pm0i
0 pm1i

1 . . . pmni
n × I(L < ρ)× 100

for the sample size calculated by a pre-specified 95% one-sided lower confidence

interval limit and

Coverage =
S

∑
i=1

N!
m0i!m1i! . . . mni!

pm0i
0 pm1i

1 . . . pmni
n × I(L < ρ < U)× 100

for the sample size calculated by a pre-specified 95% two-sided confidence interval

width where S equals the number of possible allocations of sample size N to n + 1

categories of total measurement scores.

For the simulation study, the coverage is defined as the proportion of times, in

large number of different data sets generated randomly using the same parame-

ter combination, that the obtained confidence interval contains the true intraclass

correlation coefficient ρ.

Empirical coverages approximately equal to the nominal 95% indicate the con-

fidence interval method performs satisfactorily. The criteria used here to assess

coverage have also been adopted by many other authors (Zou, 2007, Robey and

Barcikowski, 1992): strict criterion (94.5% to 95.5%); moderate criterion (93.75% to

96.25%); liberal criterion (92.5% to 97.5%).

Since the sample size formulas explicitly incorporate the assurance probability

β, it is reasonable to evaluate the empirical assurance probability to assess their

performance by seeing how often the empirical 95% one-sided lower confidence

interval is truly no less than the pre-specified lower confidence interval limit ρL,

or how often half of the empirical 95% two-sided confidence interval width is no

larger than the pre-specified confidence interval width ω.
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For the evaluation study, the empirical assurance probability is calculated as

Assurance =
S

∑
i=1

N!
m0i!m1i! . . . mni!

pm0i
0 pm1i

1 . . . pmni
n × I(ρL < L)× 100%

for the sample size calculated by a pre-specified a 95% one-sided lower confidence

interval limit and

Assurance =
S

∑
i=1

N!
m0i!m1i! . . . mni!

pm0i
0 pm1i

1 . . . pmni
n × I((U − L) < 2w)× 100%

for the sample size calculated by a pre-specified a 95% two-sided confidence in-

terval width. The empirical assurance probabilities are expected to be close to the

nominal level if a sample size formula performs well. For the simulation study,

the empirical assurance probability is defined as the proportion of times, in re-

peated data generation, that the obtained lower confidence interval is no less than

the pre-specified a 95% one-sided lower confidence interval limit, or the obtained

confidence interval width is no larger than the pre-specified a 95% two-sided con-

fidence interval width.

In order to prove validity, the results calculated by using the sample size for-

mulas proposed in the last chapter under 50% assurance probability are compared

to the results from Donner (1999) and Donner and Rotondi (2010).

4.3 Discussion of Evaluation Results

4.3.1 Sample Size

Table 4.1 displays the minimum sample sizes required to achieve pre-specified

95% one-sided lower confidence interval limit for different parameter combina-

tions with two raters.

Fewer subjects are generally required in order to achieve a higher agreement

level ρ. When the distance between ρ and the threshold ρL is a constant 0.2, then
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the minimum sample size increases from 125 to 150 when ρ is reduced from 0.8 to

0.6, and p and β are fixed at 0.1 and 0.5 respectively. As for the case where ρ and

ρL are fixed, the minimum sample sizes all drop as the success rate p increases.

Specifically, when p increases from 0.1 to 0.3, the sample sizes are all reduced by

more than half for all combinations. It is natural to demand a larger sample size if

stronger assurance probability is desired. To maintain the pre-specified lower con-

fidence interval limit, the sample size almost doubles when increasing the assur-

ance probability from 50% to 80%. The requirement for greater assurance probabil-

ity will create significantly greater costs associated with recruiting more subjects.

Table 4.2 presents the minimum sample sizes required under the same condi-

tions except the number of raters n = 3. Increasing from two raters to three raters

will lead to a reduction of the sample size by approximately 30%. In practice, re-

cruiting one extra experienced and well-trained rater can be challenging. The op-

timal combination of the number of subjects N and raters n required to minimize

the variance of the intraclass correlation coefficient for both continuous and binary

outcomes is discussed by Shoukri et al., (2004). With an minimum agreement level

of 0.6 in many clinical investigations, two or three raters are a safe recommenda-

tion.

Also it is worth noticing in Table 4.1 that when the requirement on the precision

is strict, (i.e., ρ = 0.7, ρL = 0.6 1− β = 0.8,) and the two raters’ measurement suc-

cess probability p is as low as 0.1, the sample size can be impractically large (e.g.,

1,058). One alternative way to maintain the same precision is to hire an extra rater,

as can be seen in Table 4.2 where the corresponding sample size is comparatively

low (e.g., 801).

Tables 4.3 and 4.4 presents the sample sizes needed when there are four or five

raters available. The reduction in sample size with one extra rater is modest. For

example a total of 32 subjects are needed when ρ = 0.6, ρL = 0.4, p = 0.3 and
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β = 0.5. When it comes to five raters, 29 subjects are still needed assumed other

parameters are fixed. Therefore, it is not very efficient to hire four or five raters for

reliability studies.

Similar patterns in sample size requirements are found in Tables 4.5 to 4.8 for

sample sizes that achieve a pre-specified 95% confidence interval width. Increas-

ing from two to three raters affords approximately 30% smaller sample size. Ad-

ditional raters are inefficient given the modest reduction of sample size.

To address the validity of the proposed approach, the results are compared to

those from Donner (1999) and Donner and Rotondi (2010) in Tables 4.9 to Table

4.11. The results from two approaches are close to each other under most parame-

ter combinations. For some extreme cases, e.g., p is low and precision requirement

is high, there is a difference between two approaches. But generally, the validity of

the sample size formulas under 50% assurance probability can be shown.

4.3.2 Coverage

Empirical coverage is a key factor when assessing confidence interval methods. It

is expected to be approximately equal to the nominal coverage of 95%. Over cover-

age indicates the methodology is too conservative and leads to a loss of statistical

power with high type II error. Similarly under coverage indicates the methodology

is too liberal with high type I error.

Evaluation results in Table 4.1 to Table 4.8 indicate that empirical coverages

provided by confidence intervals constructed through the modified Wald method

are consistently close to their nominal 95% level. Under most parameter combina-

tions, the coverage provided by the modified Wald method is met with at least the

moderate criterion of 93.75% to 96.25% and within this range they are never below

94.5%, which shows that the method almost always produces coverages higher
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than the nominal level. However on occasion the modified Wald method provides

coverages that are too conservative. For example for three raters and 50% assur-

ance probability, when ρ = 0.8, ρL = 0.6 and p = 0.5, the coverage is 98.54% and

there are several cases in which the coverages are above 96.25%. The coverages

produced by sample sizes achieving a pre-specified 95% two-sided confidence in-

terval widths are more stable. Almost every coverage is within the interval of

93.75% and 96.25% except for the case where n = 2, ρ = 0.8, w = 0.2, p = 0.5 and

β = 0.5, where the coverage is very liberal 93.21%.

In contrast, the Wald method provides rather unsatisfying coverage. The method

seldom reaches the nominal 95% level and mostly provide coverages that fall within

the range of 90% to 94%, an under coverage that can be considered very liberal. In

multiple cases they are even less than 90%. When n = 3, ρ = 0.8, w = 0.2, p = 0.5

and β = 0.5, the coverage is only 85.98%, very distant from the nominal level. Even

when the sample size is more than 100, the under coverage is still severe.

4.3.3 Assurance Probability

Empirical assurance probability assesses how often the sample size formulas meet

the requirement on precision. Being close to the nominal level is an optimal prop-

erty. Under the condition of 50% nominal assurance probability, the empirical as-

surance probabilities provided by the modified Wald method are relatively stable

and close to the nominal level, while those provided by the Wald method are more

heterogeneous within the range of 40% to 70% and rarely close to the nominal

level. For the modified Wald method, occasionally the empirical assurance proba-

bility outlies to, for example, 69.28%, but in most cases it deviates mildly from the

nominal level.

However, for the condition of 80% nominal assurance probability, the results

are more erratic for both methods. With the sample sizes achieving a pre-specified
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95% one-sided lower confidence interval limit, the empirical assurance probabili-

ties are still reasonable especially for the modified Wald method which consistently

produces assurance probabilities slightly under the nominal level and lies within

the range of 75% to 80%. However the Wald method can give empirical assurance

probability in a much wider range, indicating the method is very unstable. The

empirical assurance probability can be as high as 87.93% when n = 2, ρ = 0.8,

ρL = 0.6 and p = 0.5, and as low as 77.34% when n = 5, ρ = 0.6, ρL = 0.4 and

p = 0.5.

When looking at the results with sample sizes that achieve a pre-specified 95%

two-sided confidence interval width, the empirical assurance probability can reach

a comparatively wider range for both methods. It is worth noticing that in the eval-

uation study, the modified Wald method almost always gives empirical assurance

probabilities higher than those given by the Wald method, which consistently gives

empirical assurance probabilities lower than the nominal level 80%. Thus the mod-

ified Wald method performs better in achieving a nominal assurance probability.

But in a few cases especially when p = 0.5, the empirical assurance probability can

be exceptionally high, indicating the sample sizes calculated from the formulas are

too conservative.

4.4 Conclusion

Evaluation results indicate that sample sizes calculated with 50% nominal assur-

ance probability from the derived formulas in the last chapter are consistent with

pre-specified parameters. These results prove that the previously published sam-

ple size formulas implicitly guarantee only 50% probability that the results meet

the required estimation precision. The proposed formulas in the last chapter ex-

plicitly incorporate both the precision and assurance probability so that based on

a specific study objective, sample sizes can be easily calculated with desired and
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affordable precision and assurance probability.

In summary, the sample size formulas perform reasonably well in evaluation

studies. The modified Wald method is recommended to construct the confidence

interval as approval to the original Wald method since it generally maintains the

nominal coverage level and assurance probability.
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Table 4.1: Minimum sample size to achieve pre-specified 95% one-sided lower con-
fidence interval limit evaluated with empirical percentage coverage and assurance
probability for two raters

50% Assurance Probability 80% Assurance Probability

M. Wald Wald M. Wald Wald

ρ ρL p N CV† AS‡ CV AS N CV AS CV AS

0.8 0.6 0.1 125 96.66 50.07 88.37 65.38 239 96.16 78.08 91.08 84.25

0.3 52 96.61 48.75 88.93 65.05 100 96.31 78.55 90.85 85.83

0.5 44 94.89 53.08 86.13 68.95 83 97.16 79.09 92.70 87.03

0.6 0.4 0.1 150 95.91 49.89 92.86 54.63 321 95.55 77.82 93.61 79.70

0.3 67 95.87 48.75 93.03 56.59 141 95.68 78.93 93.33 81.82

0.5 57 95.74 50.12 91.64 55.25 119 95.85 79.52 93.23 82.83

0.7 0.6 0.1 497 95.53 49.98 93.55 56.18 1058 95.42 78.96 93.89 81.91

0.3 208 95.68 50.02 93.31 57.10 442 95.50 79.34 93.91 82.52

0.5 174 95.35 51.22 92.66 54.27 368 95.79 78.38 94.42 82.10

†CV: empirical coverage percentage based on exact evaluation. ‡AS: empirical
assurance probability based on exact evaluation, defined as percentage of times
that lower one-sided 95% confidence interval is no less than ρL.
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Table 4.2: Minimum sample size to achieve pre-specified 95% one-sided lower con-
fidence interval limit evaluated with empirical percentage coverage and assurance
probability for three raters

50% Assurance Probability 80% Assurance Probability

M. Wald Wald M. Wald Wald

ρ ρL p N CV† AS‡ CV AS N CV AS CV AS

0.8 0.6 0.1 95 96.86 50.47 89.56 64.89 180 96.35 76.02 91.07 83.36

0.3 33 96.62 49.22 88.71 62.88 64 96.30 77.25 91.33 84.16

0.5 26 98.54 42.93 91.85 63.32 50 95.67 77.90 89.64 85.73

0.6 0.4 0.1 115 96.31 48.72 92.78 54.18 246 95.74 76.49 93.49 78.50

0.3 39 96.12 47.63 92.85 52.30 84 95.75 76.99 93.77 79.20

0.5 30 97.11 44.41 92.95 53.60 65 95.58 77.96 93.94 78.59

0.7 0.6 0.1 379 95.80 49.67 93.28 56.48 801 95.52 78.07 93.89 81.36

0.3 131 95.76 49.40 93.59 55.22 280 95.53 78.69 94.06 81.59

0.5 102 96.13 46.25 94.19 55.05 218 95.94 79.92 94.30 81.01
†CV: empirical coverage percentage based on exact evaluation. ‡AS: empirical
assurance probability based on exact evaluation, defined as percentage of times
that lower one-sided 95% confidence interval is no less than ρL.
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Table 4.3: Minimum sample size to achieve pre-specified 95% one-sided lower con-
fidence interval limit evaluated with empirical percentage coverage and assurance
probability for four raters based on 5,000 simulation runs

50% Assurance Probability 80% Assurance Probability

M. Wald Wald M. Wald Wald

ρ ρL p N CV† AS‡ CV AS N CV AS CV AS

0.8 0.6 0.1 85 96.78 50.34 89.90 65.92 158 96.60 74.86 91.02 83.34

0.3 28 96.78 48.52 89.14 63.28 54 95.98 76.22 91.20 82.92

0.5 21 98.06 48.28 90.44 61.52 42 95.80 78.80 90.52 84.40

0.6 0.4 0.1 104 95.84 49.34 92.46 54.22 222 96.10 75.88 93.58 78.46

0.3 32 96.32 48.14 93.24 52.00 70 96.18 76.16 94.20 77.46

0.5 23 95.98 45.14 92.98 48.36 51 95.94 76.74 93.96 77.76

0.7 0.6 0.1 337 95.96 49.42 93.26 56.86 710 95.62 78.04 94.00 81.70

0.3 111 95.44 49.76 93.24 55.04 237 95.40 79.20 93.82 81.76

0.5 83 95.64 47.76 94.32 53.56 180 95.32 79.16 94.02 81.26

†CV: empirical coverage percentage based on simulation. ‡AS: empirical assur-
ance probability based on simulation, defined as percentage of times that lower
one-sided 95% confidence interval is no less than ρL.
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Table 4.4: Minimum sample size to achieve pre-specified 95% one-sided lower con-
fidence interval limit evaluated with empirical percentage coverage and assurance
probability for five raters based on 5,000 simulation runs

50% Assurance Probability 80% Assurance Probability

M. Wald Wald M. Wald Wald

ρ ρL p N CV† AS‡ CV AS N CV AS CV AS

0.8 0.6 0.1 79 97.36 49.30 90.18 67.50 147 96.86 73.62 91.72 83.30

0.3 26 97.10 49.80 89.12 62.98 50 96.18 76.24 91.24 83.20

0.5 19 98.38 47.04 88.20 57.58 38 95.92 76.96 91.50 81.86

0.6 0.4 0.1 99 96.10 47.82 92.78 53.80 210 95.98 75.64 93.98 78.64

0.3 29 96.10 48.40 93.24 51.70 63 95.82 76.66 94.02 77.78

0.5 21 96.70 46.28 93.60 48.78 46 95.76 77.10 94.06 77.34

0.7 0.6 0.1 316 96.08 50.46 93.42 57.68 663 95.52 77.70 94.08 81.24

0.3 102 95.32 49.68 93.28 55.40 218 95.24 77.78 94.14 80.72

0.5 76 95.90 48.76 94.12 53.96 165 95.62 78.30 94.60 80.80

†CV: empirical coverage percentage based on simulation. ‡AS: empirical assur-
ance probability based on simulation, defined as percentage of times that lower
one-sided 95% confidence interval is no less than ρL.
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Table 4.5: Minimum sample size to achieve pre-specified 95% two-sided confi-
dence interval widths evaluated with empirical percentage coverage and assur-
ance probability for two raters

50% Assurance Probability 80% Assurance Probability

M. Wald Wald M. Wald Wald

ρ ω p N CV† AS‡ CV AS N CV AS CV AS

0.8 0.2 0.1 101 94.87 50.35 89.48 52.49 137 95.03 77.94 91.38 73.74

0.3 42 94.83 44.66 88.41 52.03 57 95.12 79.16 90.54 79.10

0.5 35 93.21 48.00 87.15 50.54 47 95.13 79.57 94.92 79.59

0.6 0.2 0.1 177 94.95 69.78 93.39 50.26 201 94.90 85.67 93.30 69.68

0.3 74 94.95 59.23 93.64 48.71 85 94.88 85.34 93.60 76.09

0.5 62 94.61 55.96 93.32 49.30 72 95.15 88.17 94.88 80.06

0.7 0.1 0.1 569 94.88 52.88 94.54 50.50 633 94.89 75.47 94.48 72.35

0.3 236 94.90 51.02 94.48 50.08 263 94.98 78.81 94.45 78.05

0.5 196 95.21 49.79 95.08 49.79 219 95.17 80.87 94.92 80.16

†CV: empirical coverage percentage based on exact evaluation. ‡AS: empirical
assurance probability based on exact evaluation, defined as percentage of times
that half two-sided 95% confidence interval width is no larger than ω.
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Table 4.6: Minimum sample size to achieve pre-specified 95% two-sided confi-
dence interval widths evaluated with empirical percentage coverage and assur-
ance probability for three raters

50% Assurance Probability 80% Assurance Probability

M. Wald Wald M. Wald Wald

ρ ω p N CV† AS‡ CV AS N CV AS CV AS

0.8 0.2 0.1 73 95.02 46.07 90.50 50.12 101 94.75 71.27 91.73 72.61

0.3 28 94.78 51.30 90.05 51.06 37 94.97 78.71 90.93 76.38

0.5 22 95.45 49.99 85.98 48.87 29 95.39 85.33 93.55 77.77

0.6 0.2 0.1 135 94.76 65.95 92.94 51.79 155 94.79 81.85 93.47 68.09

0.3 47 94.87 69.28 93.54 52.36 53 94.93 86.31 93.78 72.11

0.5 36 94.91 67.89 92.91 40.82 41 94.85 97.83 93.55 81.65

0.7 0.1 0.1 426 94.89 51.90 94.46 50.59 478 94.97 72.31 94.57 70.20

0.3 152 94.97 53.69 94.48 49.97 168 94.98 76.96 94.50 73.47

0.5 120 94.56 54.79 93.89 49.46 131 94.58 83.83 93.99 77.72
†CV: empirical coverage percentage based on exact evaluation. ‡AS: empirical

assurance probability based on exact evaluation, defined as percentage of times
that half two-sided 95% confidence interval width is no larger than ω.
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Table 4.7: Minimum sample size to achieve pre-specified 95% two-sided confi-
dence interval widths evaluated with empirical percentage coverage and assur-
ance probability for four raters based on 5,000 simulation runs

50% Assurance Probability 80% Assurance Probability

M. Wald Wald M. Wald Wald

ρ ω p N CV† AS‡ CV AS N CV AS CV AS

0.8 0.2 0.1 63 94.28 44.92 90.64 51.94 88 94.74 68.46 92.54 71.34

0.3 24 94.06 54.32 90.84 50.86 32 95.38 80.08 92.12 75.78

0.5 19 94.44 52.94 87.64 47.82 25 95.04 89.72 90.72 80.06

0.6 0.2 0.1 120 94.40 62.18 92.92 48.84 139 94.82 79.52 93.84 66.30

0.3 40 94.40 72.12 93.58 53.68 44 94.56 84.96 93.00 69.84

0.5 30 94.20 88.04 93.28 44.04 33 94.88 97.72 93.90 81.60

0.7 0.1 0.1 373 95.22 51.18 94.82 50.78 421 95.28 70.48 94.92 69.34

0.3 130 95.30 55.44 95.14 50.34 143 94.20 76.96 93.72 73.12

0.5 100 94.60 55.86 94.06 45.82 110 95.16 88.48 94.98 81.04
†CV: empirical coverage percentage based on simulation. ‡AS: empirical assur-
ance probability based on simulation, defined as percentage of times that half two-
sided 95% confidence interval width is no larger than ω.
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Table 4.8: Minimum sample size to achieve pre-specified 95% two-sided confi-
dence interval widths evaluated with empirical percentage coverage and assur-
ance probability for five raters based on 5,000 simulation runs

50% Assurance Probability 80% Assurance Probability

M. Wald Wald M. Wald Wald

ρ ω p N CV† AS‡ CV AS N CV AS CV AS

0.8 0.2 0.1 57 93.52 40.08 90.84 50.82 81 94.42 65.74 92.34 70.96

0.3 22 94.36 53.92 90.30 52.68 29 94.56 77.70 91.70 74.36

0.5 18 93.52 55.38 88.20 47.66 23 95.68 90.36 92.54 77.88

0.6 0.2 0.1 113 94.68 62.70 93.40 51.78 132 94.90 80.42 93.86 68.90

0.3 37 95.40 75.30 93.84 57.80 41 95.14 85.04 94.04 70.38

0.5 27 95.46 89.62 94.10 38.50 30 95.18 97.70 93.52 83.52

0.7 0.1 0.1 345 94.88 51.08 94.44 51.10 392 94.60 71.06 93.92 70.34

0.3 120 95.06 55.20 94.94 50.86 132 94.98 76.28 94.28 72.28

0.5 93 95.50 60.36 94.96 47.66 101 94.72 89.82 94.24 80.34

†CV: empirical coverage percentage based on simulation. ‡AS: empirical assur-
ance probability based on simulation, defined as percentage of times that half two-
sided 95% confidence interval width is no larger than ω.
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Table 4.9: Comparison of sample sizes to achieve pre-specified 95% one-sided
lower confidence interval limit under 50% assurance probability for two raters us-
ing Equation (3.4) and the goodness-of-fit (Donner, 1999)

Sample Size

ρ0 ρL p Eqn(3.4) GOF

0.8 0.6 0.1 125 116

0.3 52 52

0.5 44 44

0.6 0.4 0.1 150 140

0.3 67 66

0.5 57 57

0.7 0.6 0.1 497 462

0.3 208 205

0.5 174 174
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Table 4.10: Comparison of sample sizes to achieve pre-specified 95% two-sided
confidence interval widths under 50% assurance probability for two raters using
Equation (3.5) and goodness-of-fit (Donner, 1999)

Sample Size

ρ ω p Eqn(3.5) GOF

0.8 0.6 0.1 101 97

0.3 42 43

0.5 35 37

0.6 0.4 0.1 177 150

0.3 74 70

0.5 62 60

0.7 0.6 0.1 569 643

0.3 236 287

0.5 196 245
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Table 4.11: Comparison of sample sizes to achieve pre-specified 95% one-sided
lower confidence interval limit under 50% assurance probability for three raters
using Equation (3.4) and the goodness-of-fit (Donner and Rotondi, 2010)

Sample Size

ρ ρL p Eqn(3.4) GOF

0.8 0.6

0.1 95 78

0.3 33 31

0.5 26 26

0.6 0.4

0.1 115 94

0.3 39 37

0.5 30 39

0.7 0.6

0.1 379 311

0.3 131 124

0.5 102 102
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Chapter 5

ILLUSTRATIVE EXAMPLES

Chapters 3 and 4 have derived and evaluated sample size formulas for de-

signed reliability studies with binary measurements. This chapter presents illus-

trative examples using data from real trials to demonstrate the use of these formu-

las. Section 5.1 considers an example arising from a study involving six patholo-

gists reading biopsy specimens from patients suspected to be affected by Crohn’s

disease (Rogel et al., 1998). A second example is provided in Section 5.2, in which

a study was conducted to assess the reliability of four expert clinicians in distin-

guishing between preparatory grief and depression on dying patients (Kraemer

et al., 2002). The common feature of both these studies is that they were carried

out to measure reliability using multiple expert raters. They also help to show

that sample size calculation can be simple when using the derived formulas, even

when the number of raters is large.

5.1 Reliability Study of Pathologists Evaluating Biopsy Specimens from Pa-

tients with Crohn’s Disease

In the study by Rogel et al. (1998), six pathologists were evaluated for reliability

based on reading a set of 68 intestinal biopsy specimens collected from patients

suspected of having Crohn’s disease. Crohn’s disease is an inflammatory bowel

disease and it may affect any part of gastrointestinal tract. Confirmation of diag-
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nosis requires evidence of disease based on imaging modalities (Rogel et al., 1998).

The study design consisted of a calibration and evaluation phase. In the calibra-

tion phase, six pathologists were asked to independently evaluate a set of biopsies.

Any discrepancies were then resolved by discussion in order to reach a consensus

rubric to assess typical lesions. Following calibration, the pathologists blindly re-

viewed 68 new intestinal biopsy specimens in the evaluation phase. Specimens

were scored on the presence (1) or absence (0) of lesions. Three of the 23 lesions

were retained: epithelioid granuloma (EG), diminution of mucosecretion (DM),

and focal infiltrate (FI). The frequency table of the assigned status for the three

lesions from each pathologist is listed in Table 5.1. Each subject is given a score

ranging from zero indicating perfect agreement on the absence of a lesion when all

raters agree on its absence, to a score of one when only one pathologist declared a

lesion, up to a maximum score of six indicating perfect agreement on its presence.

For the detection of “epithelioid granuloma (EG)” in the 68 biopsy specimens,

the numbers of subjects receiving total scores from 0 (every rater assigned 0 (ab-

sence)) to 6 (every rater assigned 1 (presence)) are 30, 4, 5, 6, 3, 5, 15 respectively.

The estimated probability of raters assigning presence to EG can be obtained as

0.39. Under the assumption of marginal homogeneity, the estimated intraclass cor-

relation coefficient is 0.66, which is very close to the maximum likelihood estimate

of agreement parameter 0.63 from the homogeneous pairwise agreement model in

Rogel et al. (1998). This indicates substantial agreement among six pathologists.

For the detection of “diminution of mucosecretion (DM)”, 29, 8, 5, 6, 10, 9

and 1 subjects respectively were assigned a total score from 0 to 6. The esti-

mated marginal probability is 0.31. The agreement level is relatively low, with

ρ̂ = 0.41 just reaching the moderate agreement level. As for the “focal infiltrate

(FI)”, ρ̂ = 0.38 is even poorer, and the estimated marginal probability is 0.35, with

22, 17, 5, 6, 15, 3 and 6 subjects respectively assigned with a total scores from 0 to
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Table 5.1: Observed frequencies for six pathologists assigning status (1: presence,
0: absence) for epithelioid granuloma (EG), diminution of mucosecretion (DM),
and focal infiltrate (FI). Zero frequencies for all three lesions are not reported.

Raters Raters

1 2 3 4 5 6 EG DM FI 1 2 3 4 5 6 EG DM FI

1 1 1 1 1 1 15 1 6 0 1 1 1 1 0 0 2 0

1 1 1 1 1 0 0 2 1 0 1 1 1 0 1 0 1 0

1 1 1 1 0 1 2 2 0 0 1 1 0 1 1 1 0 0

1 1 1 1 0 0 0 2 0 0 1 1 0 0 1 1 0 0

1 1 1 0 1 1 2 0 0 0 1 1 0 0 0 1 0 0

1 1 1 0 0 1 1 0 6 0 1 0 1 1 1 0 3 0

1 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0 1 0

1 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0

1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0

1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0 2 0

1 0 1 1 1 1 0 2 2 0 0 1 1 0 1 0 0 2

1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 2 1

1 0 1 1 0 1 0 0 7 0 0 1 0 1 1 3 0 0

1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 2 0 1

1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 2 0 2

1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0

1 0 0 1 1 1 0 1 1 0 0 0 1 0 1 0 1 2

1 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 6 1

1 0 0 1 0 1 0 0 2 0 0 0 0 1 0 2 0 0

1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 8

1 0 0 0 0 0 0 0 6 0 0 0 0 0 0 30 29 22

0 1 1 1 1 1 1 2 0
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6.

Table 5.2: Sample size for the reliability study of six pathologists assigning status
(1: presence, 0: absence) for epithelioid granuloma (EG), diminution of mucose-
cretion (DM), and focal infiltrate (FI) with specific requirements on 95% lower one-
sided confidence interval limit ρL, half 95% two-sided confidence interval width w
and assurance probability 1− β.

EG DM FI

Assurance Pr Assurance Pr Assurance Pr

ρ ρL 50% 80% ρ ρL 50% 80% ρ ρL 50% 80%

0.6 0.5 85 189 0.4 0.3 99 230 0.4 0.3 87 203

0.4 22 48 0.2 21 52 0.2 18 45

w w w

0.1 79 114 0.1 105 147 0.1 93 128

0.2 20 37 0.2 27 47 0.2 24 40

0.7 0.6 79 171 0.5 0.4 105 239 0.5 0.4 93 212

0.5 22 45 0.3 25 58 0.3 22 51

w w w

0.1 68 104 0.1 104 149 0.1 93 130

0.2 17 35 0.2 26 48 0.2 24 41

Table 5.2 shows the sample size calculated from the sample size formulas for

the reliability of six pathologists assigning status of EG, DM and FI to 68 biopsy

specimens under different requirements for either 95% lower one-sided confidence

interval limit ρL or 95% two-sided confidence interval width ω, and assurance

probability 1− β. For example, for the detection of EG, if study has a target value

of ρ = 0.6 and requires ρ̂L to be no less than 0.5 with 80% assurance probability,

the sample size should be at least 189. If the estimated confidence interval width

should be within 0.2 with 80% assurance probability, the sample size required re-
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duces to 114. For the detection of DM, when the anticipated value of ρ is 0.4, if the

study has lowered the requirement that the estimated lower confidence interval

limit above 0.2 with 80% assurance probability is already acceptable, only 52 spec-

imens should be collected. Or if the estimated confidence interval width should

be no larger than 0.4 with 80% assurance probability, a sample size of 47 is suf-

ficient. For the detection of FI, when the target value of ρ is 0.4, the sample size

that assures the estimated lower confidence interval limit no less than 0.3 with 80%

assurance probability is relatively large, 203. However if the study can accept this

requirement with only half chance, the sample size decreases immediately to less

than half, 87.

5.2 Reliability Study of Clinicians Distinguishing Dying Patients with Grief

from Depression

In this section, the study considered was conducted by Kraemer et al. (2002) to

distinguish preparatory grief from depression in dying adult patients. Virtually

all patients experience ‘preparatory grief’ when facing impending death. These

feelings are considered to be a sign of positively coping with the dying process,

usually exist for a variable period, and will diminish over time. Some patients

might also experience negative feelings such as hopelessness and worthlessness

and desire for relief from early death. Since these feelings diminish the quality

of the dying process, those patients are diagnosed with depression and can be

effectively treated (Periyakoil et al., 2005). Depression has become one of the most

common psychiatric illnesses in terminally ill patients (McDaniel et al., 1995). The

study was conducted to assess the extent to which four expert clinicians could

reliably distinguish between these two stages.

Sixty-nine subjects were sampled and four expert clinicians were asked to clas-

sify each subject as more indicative of preparatory grief (1) or depression (0). The
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numbers of subjects who were assigned with a total of s, s = 0, 1, 2, 3, 4 catego-

rizations of preparatory grief are 14, 12, 6, 8 and 29, which results in p̂ = 0.59 and

ρ̂ = 0.58. The almost substantial reliability level is in agreement with the results

presented by the study (Kraemer et al., 2002).

Table 5.3: Sample size for the reliability study of four expert clinicians distinguish-
ing 69 subjects having preparatory grief (1) and depression (0) with specific re-
quirements on 95% lower one-sided confidence interval limit ρL, 95% two-sided
confidence interval width w and assurance probability 1− β.

Assurance Pr Assurance Pr Assurance Pr

ρ ρL 50% 80% ρ ρL 50% 80% ρ ρL 50% 80%

0.5 0.4 99 223 0.6 0.5 96 213 0.7 0.6 88 190

0.3 24 55 0.4 25 54 0.5 24 51

w w w

0.1 96 128 0.1 88 122 0.1 74 111

0.2 24 40 0.2 22 39 0.2 19 36

Table 5.3 presents the sample size needed with different requirements on either

the 95% lower one-sided confidence interval limit ρL or the 95% two-sided confi-

dence interval width ω, and assurance probability 1− β. If the study has a target

ρ = 0.7 and requires the estimated lower confidence interval limit to be no less

than substantial agreement level with 80% assurance probability, N = 190 sub-

jects should be recruited. On the other hand if the estimated confidence interval

width should be within 0.2 with 80% assurance probability, a sample size of 111 is

sufficient.
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5.3 Summary

This chapter gives two examples that show the derived sample size formulas are

convenient to use. Once a reliability study determines the requirement on preci-

sion, either a lower confidence interval limit or a confidence interval width, and

assurance probability, the corresponding sample size can be easily calculated. Re-

searchers can also construct a table of sample sizes calculated using different sets of

parameters so that they can plausibly estimate what precision level and assurance

probability to expect with affordable costs in recruiting subjects.
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Chapter 6

DISCUSSION

As statistical methods for analyzing reliability studies have developed rapidly

in recent decades, it is crucial to consider study designs that drive these analyses.

Proper number of subjects (N) and number of raters (n) are of great significance

in interpreting results from these studies. In this thesis, closed-form sample size

formulas are derived focusing on confidence interval estimation from reliability

studies with binary outcomes. These formulas have the advantages of ensuring

the reliability studies achieve the pre-specified precision with desired assurance

probability.

Before the study begins, the precision thresholds may be chosen somewhat ar-

bitrarily, but the guidelines from Landis and Koch (1977) can give helpful insights.

Also, the anticipated ρ0 could be drastically differ from what is observed upon

completion of the study (Donner and Rotondi, 2010). This can have unavoidable

impact on achieving the desired precision. Thus a detailed sensitivity analysis is

recommended to detect if minor variations in π and ρ0 leads to extreme changes

in the resulted sample size. The precision approaches to calculate the sample size

can additionally provide insight into estimating ρ that can be reasonably achieved

in the planning stage of the studies.

It is useful to know that ρ = 0 indicates either that the heterogeneity of the sub-

jects selected from the population is not well detected by raters, or that the pop-
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ulation is indeed homogeneous. Thus, in a homogeneous population, it is very

difficult to achieve a high reliability level no matter if the measurement is binary

or not. This should not be considered as a flaw, or a paradox in ICC, since this phe-

nomenon only reflects the fact that when raters all tend to give same measurements

(p is close to 1 or 0), it is difficult to distinguish subjects from a homogeneous pop-

ulation. In such a population, “noise” quickly overwhelms the “signal” (Kraemer

et al., 2002).

Evaluation studies have proven these formulas perform accurately and stably.

When using the modified Wald method to construct confidence intervals, those

formulas provide empirical confidence interval coverages and assurance probabil-

ities close to the nominal levels even with extreme values.

More importantly, these formulas are easy to use, as shown in the examples.

The resulted sample sizes can be used as a test for feasibility during the planning

stage of reliability studies. They reveal the information on how many subjects a

reliability study should be recruited in order to achieve the pre-specified precision

with desired assurance probability. More restrict requirements on precision are

always accompanied by increased sample size.

In order to reduce complexity in constructing the model, the assumption of no

rater bias is assumed, if every rater possesses the same underlying probability π to

assign positive ratings to subjects. This assumption is most appropriate when the

emphasis is placed at the measurement process itself in reliability studies, rather

than the potential differences among raters Landis and Koch (1977). Even when

some differences existed, the consequent effects will be averaged out in both the

sample size estimation and further study analysis. However, substantial differ-

ences can mislead the estimation procedures. If it is unclear the differences are ho-

mogeneous, a test for no rater bias is provided by the famous Cochran’s Q-statistic,

which is illustrated by Fleiss (1973).
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Therefore, in a reliability study context assuming no rater bias, the sample size

calculations based on the intraclass kappa using precision approaches are recom-

mended for multiple raters and binary outcomes. The resulting sample size can

provide additional insight into the interpretation of a reliability study especially in

the planning stages.
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