Trigonometry and PreCalculus Tutor
Worksheet 7
Finding Sin, Cos, Tan
Using the Unit Circle

Trigonometry and Pre-Calculus Tutor – Worksheet 7 – Finding Sin, Cos, Tan Using the Unit Circle

1. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 135° .

2. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{7\pi}{6}$.

$$\sin \frac{7\pi}{6} =$$
_____, $\cos \frac{7\pi}{6} =$ _____, $\tan \frac{7\pi}{6} =$ _____

3. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 150° .

$$sin150^{\circ} =$$
_____, $cos150^{\circ} =$ _____, $tan150^{\circ} =$ _____

4. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{5\pi}{3}$.

$$\sin \frac{5\pi}{3} =$$
_____, $\cos \frac{5\pi}{3} =$ _____, $\tan \frac{5\pi}{3} =$ _____

5. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 270° .

$$sin270^{\circ} =$$
_____, $cos270^{\circ} =$ _____, $tan270^{\circ} =$ _____

6. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{\pi}{2}$.

$$\sin \frac{\pi}{2} =$$
____, $\cos \frac{\pi}{2} =$ ____, $\tan \frac{\pi}{2} =$ ____

7. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 300° .

$$sin300^{\circ} =$$
_____, $cos300^{\circ} =$ _____, $tan300^{\circ} =$ _____

8. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{3\pi}{4}$.

$$\sin \frac{3\pi}{4} =$$
____, $\cos \frac{3\pi}{4} =$ ____, $\tan \frac{3\pi}{4} =$ ____

9. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 210° .

$$sin210^{\circ} =$$
_____, $cos210^{\circ} =$ _____, $tan210^{\circ} =$ _____

10. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{\pi}{6}$.

$$\sin \frac{\pi}{6} =$$
____, $\cos \frac{\pi}{6} =$ ____, $\tan \frac{\pi}{6} =$ ____

11. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 120° .

$$sin120^{\circ} =$$
_____, $cos120^{\circ} =$ _____, $tan120^{\circ} =$ _____

12. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{11\pi}{6}$.

$$\sin \frac{11\pi}{6} =$$
_____, $\cos \frac{11\pi}{6} =$ _____, $\tan \frac{11\pi}{6} =$ _____

13. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 30° .

$$sin30^{\circ} =$$
_____, $cos30^{\circ} =$ _____, $tan30^{\circ} =$ _____

14. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of 2π .

$$\sin 2\pi =$$
_____, $\cos 2\pi =$ _____, $\tan 2\pi =$ _____

15. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 225° .

$$sin225^{\circ} = \underline{\hspace{1cm}}, cos225^{\circ} = \underline{\hspace{1cm}}, tan225^{\circ} = \underline{\hspace{1cm}}$$

16. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{5\pi}{4}$.

$$\sin \frac{5\pi}{4} =$$
_____, $\cos \frac{5\pi}{4} =$ _____, $\tan \frac{5\pi}{4} =$ _____

17. Use the unit circle to find the measures of two angles, in degrees, whose sine ratio is $\frac{\sqrt{2}}{2}$.

18. Use the unit circle to find the measures of two angles, in radians, whose tangent ratio is -1.

19. Use the unit circle to find the measures of two angles, in degrees, whose cosine ratio is $-\frac{1}{2}$.

20. Use the unit circle to find the measures of two angles, in radians, whose tangent ratio is $1. \ \ \,$

21. Use the unit circle to find the measures of two angles, in degrees, whose cosine ratio is $\frac{\sqrt{3}}{2}$.

22. Use the unit circle to find the measures of two angles, in radians, whose sine ratio is $\frac{\sqrt{3}}{2}$.

23. Use the unit circle to find the measures of two angles, in degrees, whose tangent ratio is $-\sqrt{3}$.

24. Use the unit circle to find the measures of two angles, in radians, whose sine ratio is $\boldsymbol{0}$.

25. Use the unit circle to find the measures of two angles, in degrees, whose cosine ratio is $\boldsymbol{0}$.

26. Use the unit circle to find the measures of two angles, in radians, whose sine ratio is $-\frac{1}{2}$.

27. Use the unit circle to find the measures of two angles, in degrees, whose cosine ratio is $-\frac{\sqrt{2}}{2}$.

28. Use the unit circle to find the measures of two angles, in radians, whose tangent ratio is $\boldsymbol{0}$.

29. Use the unit circle to find the measures of two angles, in degrees, whose sine ratio is $\frac{1}{2}$.

30. Use the unit circle to find the measures of two angles, in radians, whose tangent ratio is $-\frac{\sqrt{3}}{3}.$

Answers – Trigonometry and Pre-Calculus Tutor – Worksheet 7 – Finding Sin, Cos, Tan Using the Unit Circle

The unit circle with all of its values is:

You can use the unit circle to find the value of the trig ratios only of angles that can be expressed as multiples of 30° , 45° , 60° , or 90° or in their radian equivalents $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, or $\frac{\pi}{2}$.

In the unit circle, the hypotenuse is always 1, so the sine ratio is the y —value, the cosine ratio is the x —value, and the tangent ratio is the ratio $\frac{y}{x}$. Furthermore, you only have to memorize the values in the first quadrant, and then change the signs of these ratios in the other quadrants, depending on the signs of x and y.

1. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 135° .

In the unit circle, $sin\theta = y$, $cos\theta = x$, $tan\theta = \frac{y}{x}$. The unit circle shows the point $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ at 135° because 135° is a mirror image of 45° across the y —axis.

Answer:
$$sin135^{\circ} = \frac{\sqrt{2}}{2}$$
, $cos135^{\circ} = -\frac{\sqrt{2}}{2}$, $tan135^{\circ} = \frac{\left(\frac{\sqrt{2}}{2}\right)}{\left(-\frac{\sqrt{2}}{2}\right)} = -1$

2. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{7\pi}{6}$.

In the unit circle, $sin\theta=y,cos\theta=x,tan\theta=\frac{y}{x}$. The unit circle shows the point $\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$ at $\frac{7\pi}{6}$ radians because $\frac{7\pi}{6}$ is a mirror image of $\frac{\pi}{6}$ across the origin.

Answer:
$$sin \frac{7\pi}{6} = -\frac{1}{2}$$
, $cos \frac{7\pi}{6} = -\frac{\sqrt{3}}{2}$, $tan \frac{7\pi}{6} = \frac{\left(-\frac{1}{2}\right)}{\left(-\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$

3. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 150° .

In the unit circle, $sin\theta = y$, $cos\theta = x$, $tan\theta = \frac{y}{x}$. The unit circle shows the point $\left(-\frac{\sqrt{3}}{2},\frac{1}{2}\right)$ at 150° because 150° is a mirror image of 30° across the y —axis.

Answer:
$$sin150^{\circ} = \frac{1}{2}$$
, $cos150^{\circ} = -\frac{\sqrt{3}}{2}$, $tan150^{\circ} = \frac{\left(\frac{1}{2}\right)}{\left(-\frac{\sqrt{3}}{2}\right)} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$

4. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{5\pi}{3}$.

In the unit circle, $sin\theta = y$, $cos\theta = x$, $tan\theta = \frac{y}{x}$. The unit circle shows the point $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ at $\frac{5\pi}{3}$ radians because $\frac{5\pi}{3}$ is a mirror image of $\frac{\pi}{3}$ across the x -axis.

Answer:
$$sin \frac{5\pi}{3} = -\frac{\sqrt{3}}{2}$$
, $cos \frac{5\pi}{3} = \frac{1}{2}$, $tan \frac{5\pi}{3} = \frac{\left(-\frac{\sqrt{3}}{2}\right)}{\left(\frac{1}{2}\right)} = -\sqrt{3}$

5. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 270° .

In the unit circle, $sin\theta = y$, $cos\theta = x$, $tan\theta = \frac{y}{x}$. The unit circle shows the point (0,-1) at 270° because 270° is a mirror image of 90° across the x —axis.

Answer: $sin270^{\circ} = -1$, $cos270^{\circ} = 0$, $tan270^{\circ} = -\frac{1}{0} = undefined$

6. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{\pi}{2}$.

In the unit circle, $sin\theta=y$, $cos\theta=x$, $tan\theta=\frac{y}{x}$. The unit circle shows the point (0,1) at $\frac{\pi}{2}$ radians.

Answer: $sin \frac{\pi}{2} = 1$, $cos \frac{\pi}{2} = 0$, $tan \frac{\pi}{2} = \frac{1}{0} = undefined$

7. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 300° .

In the unit circle, $sin\theta = y, cos\theta = x, tan\theta = \frac{y}{x}$. The unit circle shows the point $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ at 300° because 300° is a mirror image of 60° across the x —axis.

Answer: $sin300^{\circ} = -\frac{\sqrt{3}}{2}$, $cos300^{\circ} = \frac{1}{2}$, $tan300^{\circ} = \frac{\left(-\frac{\sqrt{3}}{2}\right)}{\left(\frac{1}{2}\right)} = -\sqrt{3}$

8. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{3\pi}{4}$.

In the unit circle, $sin\theta=y,cos\theta=x,tan\theta=\frac{y}{x}$. The unit circle shows the point $\left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$ at $\frac{3\pi}{4}$ radians because $\frac{3\pi}{4}$ is a mirror image of $\frac{\pi}{4}$ across the y —axis.

Answer: $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$, $\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$, $\tan \frac{3\pi}{4} = \frac{\left(\frac{\sqrt{2}}{2}\right)}{\left(-\frac{\sqrt{2}}{2}\right)} = -1$

9. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 210° .

In the unit circle, $sin\theta=y,cos\theta=x,tan\theta=\frac{y}{x}$. The unit circle shows the point $\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$ at 210° because 210° is a mirror image of 30° across the origin.

Answer: $sin210^{\circ} = -\frac{1}{2}$, $cos210^{\circ} = -\frac{\sqrt{3}}{2}$, $tan210^{\circ} = \frac{\left(-\frac{1}{2}\right)}{\left(-\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$

10. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{\pi}{6}$.

In the unit circle, $sin\theta = y$, $cos\theta = x$, $tan\theta = \frac{y}{x}$. The unit circle shows the point $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ at $\frac{\pi}{6}$ radians.

Answer: $\sin \frac{\pi}{6} = \frac{1}{2}$, $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$, $\tan \frac{\pi}{6} = \frac{\left(\frac{1}{2}\right)}{\left(\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$

11. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 120° .

In the unit circle, $sin\theta = y$, $cos\theta = x$, $tan\theta = \frac{y}{x}$. The unit circle shows the point $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ at 120° because 120° is a mirror image of 60° across the y —axis.

Answer: $sin120^{\circ} = \frac{\sqrt{3}}{2}$, $cos120^{\circ} = -\frac{1}{2}$, $tan120^{\circ} = \frac{\left(\frac{\sqrt{3}}{2}\right)}{\left(-\frac{1}{2}\right)} = \frac{\sqrt{3}}{-1} = -\sqrt{3}$

12. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{11\pi}{6}$.

In the unit circle, $sin\theta = y, cos\theta = x, tan\theta = \frac{y}{x}$. The unit circle shows the point $\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$ at $\frac{11\pi}{6}$ radians because $\frac{11\pi}{6}$ is a mirror image of $\frac{\pi}{6}$ across the x -axis.

Answer:
$$sin \frac{11\pi}{6} = -\frac{1}{2}$$
, $cos \frac{11\pi}{6} = \frac{\sqrt{3}}{2}$, $tan \frac{11\pi}{6} = \frac{\left(-\frac{1}{2}\right)}{\left(\frac{\sqrt{3}}{2}\right)} = \frac{-1}{\sqrt{3}}$ or $-\frac{\sqrt{3}}{3}$

13. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 30° .

In the unit circle, $sin\theta = y$, $cos\theta = x$, $tan\theta = \frac{y}{x}$. The unit circle shows the point $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ at 30° .

Answer:
$$sin30^{\circ} = \frac{1}{2}$$
, $cos30^{\circ} = \frac{\sqrt{3}}{2}$, $tan30^{\circ} = \frac{\left(\frac{1}{2}\right)}{\left(\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$

14. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of 2π .

In the unit circle, $sin\theta = y$, $cos\theta = x$, $tan\theta = \frac{y}{x}$. The unit circle shows the point (1,0) at 2π radians because 2π is equivalent to 0 radians.

Answer:
$$sin 2\pi = 0$$
, $cos 2\pi = 1$, $tan 2\pi = \frac{0}{1} = 0$

15. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 225°.

In the unit circle, $sin\theta=y$, $cos\theta=x$, $tan\theta=\frac{y}{x}$. The unit circle shows the point $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ at 225° because 225° is a mirror image of 45° across the origin.

Answer:
$$sin225^{\circ} = -\frac{\sqrt{2}}{2}$$
, $cos225^{\circ} = -\frac{\sqrt{2}}{2}$, $tan225^{\circ} = \frac{\left(-\frac{\sqrt{2}}{2}\right)}{\left(-\frac{\sqrt{2}}{2}\right)} = 1$

16. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{5\pi}{4}$.

In the unit circle, $sin\theta=y,cos\theta=x,tan\theta=\frac{y}{x}$. The unit circle shows the point $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ at $\frac{5\pi}{4}$ radians because $\frac{5\pi}{4}$ is a mirror image of $\frac{\pi}{4}$ across the origin.

Answer:
$$\sin \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$$
, $\cos \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$, $\tan \frac{5\pi}{4} = \frac{\left(-\frac{\sqrt{2}}{2}\right)}{\left(-\frac{\sqrt{2}}{2}\right)} = 1$

17. Use the unit circle to find the measures of two angles, in degrees, whose sine ratio is $\frac{\sqrt{2}}{2}$.

The sine ratio is the y -value of a point on the unit circle. The ratio $\frac{\sqrt{2}}{2}$ is the y -value of 45° so one angle is 45° . The other angle in the unit circle with the same value and sign of the sine ratio is the angle that is the mirror image of 45° across the y -axis, which is 135° .

Answer: 45°, 135°

18. Use the unit circle to find the measures of two angles, in radians, whose tangent ratio is -1.

The tangent ratio is the ratio of $\frac{y}{x}$ of a point on the unit circle. The ratio $\frac{-1}{1}$ is the reflection of the tangent ratio of $\frac{\pi}{4}$ across the y —axis and across the x — axis, so the angles are $\frac{3\pi}{4}$ and $-\frac{\pi}{4}$ which is $\frac{7\pi}{4}$.

Answer:
$$\frac{3\pi}{4}$$
, $\frac{7\pi}{4}$

19. Use the unit circle to find the measures of two angles, in degrees, whose cosine ratio is $-\frac{1}{2}$.

The cosine ratio is the x -value of a point on the unit circle. The ratio $-\frac{1}{2}$ is the mirror image of the x -value of 60° across the y -axis, and across the origin, so one angle is 120° . The other angle in the unit circle with the same x -value that is the mirror image of 60° across the origin is 240° .

Answer: 120°, 240°

20. Use the unit circle to find the measures of two angles, in radians, whose tangent ratio is $1. \,$

The tangent ratio is the ratio of $\frac{y}{x}$ of a point on the unit circle. The ratio 1 is the tangent ratio of $\frac{\pi}{4}$ so one angle is $\frac{\pi}{4}$. The other angle that has the tangent ratio with the same value is the reflection of $\frac{\pi}{4}$ across the origin, so that angle is $\frac{5\pi}{4}$.

Answer: $\frac{\pi}{4}$, $\frac{5\pi}{4}$

21. Use the unit circle to find the measures of two angles, in degrees, whose cosine ratio is $\frac{\sqrt{3}}{2}$.

The cosine ratio is the x —value of a point on the unit circle. The ratio $\frac{\sqrt{3}}{2}$ is the x —value of 30°. The other angle in the unit circle with the same x —value is a reflection across the x —axis, so that angle is 330°.

Answer: 30°, 330°

22. Use the unit circle to find the measures of two angles, in radians, whose sine ratio is $\frac{\sqrt{3}}{2}$.

The sine ratio is the y -value of a point on the unit circle. The ratio $\frac{\sqrt{3}}{2}$ is the y -value of $\frac{\pi}{3}$ so one angle is $\frac{\pi}{3}$. The other angle that has the same y -value is a reflection across the y -axis, so that angle is $\frac{2\pi}{3}$.

Answer:
$$\frac{\pi}{3}$$
, $\frac{2\pi}{3}$

23. Use the unit circle to find the measures of two angles, in degrees, whose tangent ratio is $-\sqrt{3}$.

The tangent ratio is the ratio of $\frac{y}{x}$ of a point on the unit circle. The ratio $-\sqrt{3}$ is equivalent to the opposite of the tangent ratio $\frac{\sqrt{3}}{\frac{1}{2}}$. This is the tangent ratio of 60° so the opposite ratio is the tangent of the angle that is a reflection across the y —axis which is 120° . The other angle that has the tangent ratio with the same value is the reflection of 60° across the origin, so that angle is 300° .

Answer: 120°, 300°

24. Use the unit circle to find the measures of two angles, in radians, whose sine ratio is 0.

The sine ratio is the y —value of a point on the unit circle. The ratio 0 is the y —value of 0 radians so one angle is 0 radians. The other angle in the unit circle with the same value and sign of the sine ratio is the angle that is the mirror image of 0 radians across the y —axis, which is π .

Answer: $0, \pi$

25. Use the unit circle to find the measures of two angles, in degrees, whose cosine ratio is 0.

The cosine ratio is the x —value of a point on the unit circle. The ratio 0 is the x —value of 90° . The other angle in the unit circle with the same x —value is a reflection across the x —axis, so that angle is 270° .

Answer: 90°, 270°

26. Use the unit circle to find the measures of two angles, in radians, whose sine ratio is $-\frac{1}{2}$.

The sine ratio is the y -value of a point on the unit circle. The ratio $-\frac{1}{2}$ is the opposite of the y -value of $\frac{\pi}{6}$ radians, which is a reflection of $\frac{\pi}{6}$ across the x -axis, so one angle is $\frac{11\pi}{6}$ radians. The other angle in the unit circle with the same value and sign of the sine ratio is the angle that is the mirror image of $\frac{\pi}{6}$ radians across the origin, which is $\frac{7\pi}{6}$.

Answer: $\frac{7\pi}{6}$, $\frac{11\pi}{6}$

27. Use the unit circle to find the measures of two angles, in degrees, whose cosine ratio is $-\frac{\sqrt{2}}{2}$.

The cosine ratio is the x -value of a point on the unit circle. The ratio $-\frac{\sqrt{2}}{2}$ is the opposite of the x -value of 45° , which is a reflection of 45° across the y -axis, so one angle is 135° . The other angle in the unit circle with the same x -value is a reflection of 45° across the origin, so that angle is 225° .

Answer: 135°, 225°

28. Use the unit circle to find the measures of two angles, in radians, whose tangent ratio is 0.

The tangent ratio is the ratio of $\frac{y}{x}$ of a point on the unit circle. The ratio 0 is the opposite of the tangent ratio of 0 radians. The other angle that has the tangent ratio with the same value is the reflection of 0 radians across the y —axis, so that angle is π .

Answer: $0, \pi$

29. Use the unit circle to find the measures of two angles, in degrees, whose sine ratio is $\frac{1}{2}$.

The sine ratio is the y —value of a point on the unit circle. The ratio $\frac{1}{2}$ is the y —value of 30° , so one angle is 30° . The other angle in the unit circle with the same value and sign of the sine ratio is the angle that is the mirror image of 30° radians across the y —axis, which is 150° .

Answer: 30°, 150°

30. Use the unit circle to find the measures of two angles, in radians, whose tangent ratio is $-\frac{\sqrt{3}}{3}$.

The tangent ratio is the ratio of $\frac{y}{x}$ of a point on the unit circle. The ratio $-\frac{\sqrt{3}}{3}$ is equivalent to the opposite of the tangent ratio $\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$. This is the tangent ratio of $\frac{\pi}{6}$ so the opposite ratio is the tangent of the angle that is a reflection across the x —axis which is $\frac{11\pi}{6}$. The other angle that has the tangent ratio with the same value is the reflection of $\frac{\pi}{6}$ across the y —axis, so that angle is $\frac{5\pi}{6}$.

Answer: $\frac{5\pi}{6}$, $\frac{11\pi}{6}$