Trigonometry and PreCalculus Tutor Worksheet 7 Finding Sin, Cos, Tan Using the Unit Circle Trigonometry and Pre-Calculus Tutor – Worksheet 7 – Finding Sin, Cos, Tan Using the Unit Circle 1. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 135° . 2. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{7\pi}{6}$. $$\sin \frac{7\pi}{6} =$$ _____, $\cos \frac{7\pi}{6} =$ _____, $\tan \frac{7\pi}{6} =$ _____ 3. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 150° . $$sin150^{\circ} =$$ _____, $cos150^{\circ} =$ _____, $tan150^{\circ} =$ _____ 4. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{5\pi}{3}$. $$\sin \frac{5\pi}{3} =$$ _____, $\cos \frac{5\pi}{3} =$ _____, $\tan \frac{5\pi}{3} =$ _____ 5. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 270° . $$sin270^{\circ} =$$ _____, $cos270^{\circ} =$ _____, $tan270^{\circ} =$ _____ 6. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{\pi}{2}$. $$\sin \frac{\pi}{2} =$$ ____, $\cos \frac{\pi}{2} =$ ____, $\tan \frac{\pi}{2} =$ ____ 7. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 300° . $$sin300^{\circ} =$$ _____, $cos300^{\circ} =$ _____, $tan300^{\circ} =$ _____ 8. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{3\pi}{4}$. $$\sin \frac{3\pi}{4} =$$ ____, $\cos \frac{3\pi}{4} =$ ____, $\tan \frac{3\pi}{4} =$ ____ 9. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 210° . $$sin210^{\circ} =$$ _____, $cos210^{\circ} =$ _____, $tan210^{\circ} =$ _____ 10. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{\pi}{6}$. $$\sin \frac{\pi}{6} =$$ ____, $\cos \frac{\pi}{6} =$ ____, $\tan \frac{\pi}{6} =$ ____ 11. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 120° . $$sin120^{\circ} =$$ _____, $cos120^{\circ} =$ _____, $tan120^{\circ} =$ _____ 12. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{11\pi}{6}$. $$\sin \frac{11\pi}{6} =$$ _____, $\cos \frac{11\pi}{6} =$ _____, $\tan \frac{11\pi}{6} =$ _____ 13. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 30° . $$sin30^{\circ} =$$ _____, $cos30^{\circ} =$ _____, $tan30^{\circ} =$ _____ 14. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of 2π . $$\sin 2\pi =$$ _____, $\cos 2\pi =$ _____, $\tan 2\pi =$ _____ 15. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 225° . $$sin225^{\circ} = \underline{\hspace{1cm}}, cos225^{\circ} = \underline{\hspace{1cm}}, tan225^{\circ} = \underline{\hspace{1cm}}$$ 16. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{5\pi}{4}$. $$\sin \frac{5\pi}{4} =$$ _____, $\cos \frac{5\pi}{4} =$ _____, $\tan \frac{5\pi}{4} =$ _____ 17. Use the unit circle to find the measures of two angles, in degrees, whose sine ratio is $\frac{\sqrt{2}}{2}$. 18. Use the unit circle to find the measures of two angles, in radians, whose tangent ratio is -1. 19. Use the unit circle to find the measures of two angles, in degrees, whose cosine ratio is $-\frac{1}{2}$. 20. Use the unit circle to find the measures of two angles, in radians, whose tangent ratio is $1. \ \ \,$ 21. Use the unit circle to find the measures of two angles, in degrees, whose cosine ratio is $\frac{\sqrt{3}}{2}$. 22. Use the unit circle to find the measures of two angles, in radians, whose sine ratio is $\frac{\sqrt{3}}{2}$. 23. Use the unit circle to find the measures of two angles, in degrees, whose tangent ratio is $-\sqrt{3}$. 24. Use the unit circle to find the measures of two angles, in radians, whose sine ratio is $\boldsymbol{0}$. 25. Use the unit circle to find the measures of two angles, in degrees, whose cosine ratio is $\boldsymbol{0}$. 26. Use the unit circle to find the measures of two angles, in radians, whose sine ratio is $-\frac{1}{2}$. 27. Use the unit circle to find the measures of two angles, in degrees, whose cosine ratio is $-\frac{\sqrt{2}}{2}$. 28. Use the unit circle to find the measures of two angles, in radians, whose tangent ratio is $\boldsymbol{0}$. 29. Use the unit circle to find the measures of two angles, in degrees, whose sine ratio is $\frac{1}{2}$. 30. Use the unit circle to find the measures of two angles, in radians, whose tangent ratio is $-\frac{\sqrt{3}}{3}.$ Answers – Trigonometry and Pre-Calculus Tutor – Worksheet 7 – Finding Sin, Cos, Tan Using the Unit Circle The unit circle with all of its values is: You can use the unit circle to find the value of the trig ratios only of angles that can be expressed as multiples of 30° , 45° , 60° , or 90° or in their radian equivalents $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, or $\frac{\pi}{2}$. In the unit circle, the hypotenuse is always 1, so the sine ratio is the y —value, the cosine ratio is the x —value, and the tangent ratio is the ratio $\frac{y}{x}$. Furthermore, you only have to memorize the values in the first quadrant, and then change the signs of these ratios in the other quadrants, depending on the signs of x and y. 1. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 135° . In the unit circle, $sin\theta = y$, $cos\theta = x$, $tan\theta = \frac{y}{x}$. The unit circle shows the point $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ at 135° because 135° is a mirror image of 45° across the y —axis. **Answer**: $$sin135^{\circ} = \frac{\sqrt{2}}{2}$$, $cos135^{\circ} = -\frac{\sqrt{2}}{2}$, $tan135^{\circ} = \frac{\left(\frac{\sqrt{2}}{2}\right)}{\left(-\frac{\sqrt{2}}{2}\right)} = -1$ 2. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{7\pi}{6}$. In the unit circle, $sin\theta=y,cos\theta=x,tan\theta=\frac{y}{x}$. The unit circle shows the point $\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$ at $\frac{7\pi}{6}$ radians because $\frac{7\pi}{6}$ is a mirror image of $\frac{\pi}{6}$ across the origin. **Answer**: $$sin \frac{7\pi}{6} = -\frac{1}{2}$$, $cos \frac{7\pi}{6} = -\frac{\sqrt{3}}{2}$, $tan \frac{7\pi}{6} = \frac{\left(-\frac{1}{2}\right)}{\left(-\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$ 3. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 150° . In the unit circle, $sin\theta = y$, $cos\theta = x$, $tan\theta = \frac{y}{x}$. The unit circle shows the point $\left(-\frac{\sqrt{3}}{2},\frac{1}{2}\right)$ at 150° because 150° is a mirror image of 30° across the y —axis. **Answer**: $$sin150^{\circ} = \frac{1}{2}$$, $cos150^{\circ} = -\frac{\sqrt{3}}{2}$, $tan150^{\circ} = \frac{\left(\frac{1}{2}\right)}{\left(-\frac{\sqrt{3}}{2}\right)} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$ 4. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{5\pi}{3}$. In the unit circle, $sin\theta = y$, $cos\theta = x$, $tan\theta = \frac{y}{x}$. The unit circle shows the point $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ at $\frac{5\pi}{3}$ radians because $\frac{5\pi}{3}$ is a mirror image of $\frac{\pi}{3}$ across the x -axis. **Answer**: $$sin \frac{5\pi}{3} = -\frac{\sqrt{3}}{2}$$, $cos \frac{5\pi}{3} = \frac{1}{2}$, $tan \frac{5\pi}{3} = \frac{\left(-\frac{\sqrt{3}}{2}\right)}{\left(\frac{1}{2}\right)} = -\sqrt{3}$ 5. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 270° . In the unit circle, $sin\theta = y$, $cos\theta = x$, $tan\theta = \frac{y}{x}$. The unit circle shows the point (0,-1) at 270° because 270° is a mirror image of 90° across the x —axis. **Answer**: $sin270^{\circ} = -1$, $cos270^{\circ} = 0$, $tan270^{\circ} = -\frac{1}{0} = undefined$ 6. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{\pi}{2}$. In the unit circle, $sin\theta=y$, $cos\theta=x$, $tan\theta=\frac{y}{x}$. The unit circle shows the point (0,1) at $\frac{\pi}{2}$ radians. **Answer**: $sin \frac{\pi}{2} = 1$, $cos \frac{\pi}{2} = 0$, $tan \frac{\pi}{2} = \frac{1}{0} = undefined$ 7. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 300° . In the unit circle, $sin\theta = y, cos\theta = x, tan\theta = \frac{y}{x}$. The unit circle shows the point $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ at 300° because 300° is a mirror image of 60° across the x —axis. **Answer**: $sin300^{\circ} = -\frac{\sqrt{3}}{2}$, $cos300^{\circ} = \frac{1}{2}$, $tan300^{\circ} = \frac{\left(-\frac{\sqrt{3}}{2}\right)}{\left(\frac{1}{2}\right)} = -\sqrt{3}$ 8. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{3\pi}{4}$. In the unit circle, $sin\theta=y,cos\theta=x,tan\theta=\frac{y}{x}$. The unit circle shows the point $\left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$ at $\frac{3\pi}{4}$ radians because $\frac{3\pi}{4}$ is a mirror image of $\frac{\pi}{4}$ across the y —axis. **Answer**: $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$, $\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$, $\tan \frac{3\pi}{4} = \frac{\left(\frac{\sqrt{2}}{2}\right)}{\left(-\frac{\sqrt{2}}{2}\right)} = -1$ 9. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 210° . In the unit circle, $sin\theta=y,cos\theta=x,tan\theta=\frac{y}{x}$. The unit circle shows the point $\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$ at 210° because 210° is a mirror image of 30° across the origin. **Answer**: $sin210^{\circ} = -\frac{1}{2}$, $cos210^{\circ} = -\frac{\sqrt{3}}{2}$, $tan210^{\circ} = \frac{\left(-\frac{1}{2}\right)}{\left(-\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$ 10. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{\pi}{6}$. In the unit circle, $sin\theta = y$, $cos\theta = x$, $tan\theta = \frac{y}{x}$. The unit circle shows the point $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ at $\frac{\pi}{6}$ radians. **Answer**: $\sin \frac{\pi}{6} = \frac{1}{2}$, $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$, $\tan \frac{\pi}{6} = \frac{\left(\frac{1}{2}\right)}{\left(\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$ 11. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 120° . In the unit circle, $sin\theta = y$, $cos\theta = x$, $tan\theta = \frac{y}{x}$. The unit circle shows the point $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ at 120° because 120° is a mirror image of 60° across the y —axis. **Answer**: $sin120^{\circ} = \frac{\sqrt{3}}{2}$, $cos120^{\circ} = -\frac{1}{2}$, $tan120^{\circ} = \frac{\left(\frac{\sqrt{3}}{2}\right)}{\left(-\frac{1}{2}\right)} = \frac{\sqrt{3}}{-1} = -\sqrt{3}$ 12. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{11\pi}{6}$. In the unit circle, $sin\theta = y, cos\theta = x, tan\theta = \frac{y}{x}$. The unit circle shows the point $\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$ at $\frac{11\pi}{6}$ radians because $\frac{11\pi}{6}$ is a mirror image of $\frac{\pi}{6}$ across the x -axis. **Answer**: $$sin \frac{11\pi}{6} = -\frac{1}{2}$$, $cos \frac{11\pi}{6} = \frac{\sqrt{3}}{2}$, $tan \frac{11\pi}{6} = \frac{\left(-\frac{1}{2}\right)}{\left(\frac{\sqrt{3}}{2}\right)} = \frac{-1}{\sqrt{3}}$ or $-\frac{\sqrt{3}}{3}$ 13. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 30° . In the unit circle, $sin\theta = y$, $cos\theta = x$, $tan\theta = \frac{y}{x}$. The unit circle shows the point $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ at 30° . **Answer**: $$sin30^{\circ} = \frac{1}{2}$$, $cos30^{\circ} = \frac{\sqrt{3}}{2}$, $tan30^{\circ} = \frac{\left(\frac{1}{2}\right)}{\left(\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$ 14. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of 2π . In the unit circle, $sin\theta = y$, $cos\theta = x$, $tan\theta = \frac{y}{x}$. The unit circle shows the point (1,0) at 2π radians because 2π is equivalent to 0 radians. **Answer**: $$sin 2\pi = 0$$, $cos 2\pi = 1$, $tan 2\pi = \frac{0}{1} = 0$ 15. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a measure of 225°. In the unit circle, $sin\theta=y$, $cos\theta=x$, $tan\theta=\frac{y}{x}$. The unit circle shows the point $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ at 225° because 225° is a mirror image of 45° across the origin. **Answer**: $$sin225^{\circ} = -\frac{\sqrt{2}}{2}$$, $cos225^{\circ} = -\frac{\sqrt{2}}{2}$, $tan225^{\circ} = \frac{\left(-\frac{\sqrt{2}}{2}\right)}{\left(-\frac{\sqrt{2}}{2}\right)} = 1$ 16. Use the unit circle to find the sine, cosine, and tangent ratios of an angle with a radian measure of $\frac{5\pi}{4}$. In the unit circle, $sin\theta=y,cos\theta=x,tan\theta=\frac{y}{x}$. The unit circle shows the point $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ at $\frac{5\pi}{4}$ radians because $\frac{5\pi}{4}$ is a mirror image of $\frac{\pi}{4}$ across the origin. **Answer**: $$\sin \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$$, $\cos \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$, $\tan \frac{5\pi}{4} = \frac{\left(-\frac{\sqrt{2}}{2}\right)}{\left(-\frac{\sqrt{2}}{2}\right)} = 1$ 17. Use the unit circle to find the measures of two angles, in degrees, whose sine ratio is $\frac{\sqrt{2}}{2}$. The sine ratio is the y -value of a point on the unit circle. The ratio $\frac{\sqrt{2}}{2}$ is the y -value of 45° so one angle is 45° . The other angle in the unit circle with the same value and sign of the sine ratio is the angle that is the mirror image of 45° across the y -axis, which is 135° . **Answer**: 45°, 135° 18. Use the unit circle to find the measures of two angles, in radians, whose tangent ratio is -1. The tangent ratio is the ratio of $\frac{y}{x}$ of a point on the unit circle. The ratio $\frac{-1}{1}$ is the reflection of the tangent ratio of $\frac{\pi}{4}$ across the y —axis and across the x — axis, so the angles are $\frac{3\pi}{4}$ and $-\frac{\pi}{4}$ which is $\frac{7\pi}{4}$. Answer: $$\frac{3\pi}{4}$$, $\frac{7\pi}{4}$ 19. Use the unit circle to find the measures of two angles, in degrees, whose cosine ratio is $-\frac{1}{2}$. The cosine ratio is the x -value of a point on the unit circle. The ratio $-\frac{1}{2}$ is the mirror image of the x -value of 60° across the y -axis, and across the origin, so one angle is 120° . The other angle in the unit circle with the same x -value that is the mirror image of 60° across the origin is 240° . **Answer**: 120°, 240° 20. Use the unit circle to find the measures of two angles, in radians, whose tangent ratio is $1. \,$ The tangent ratio is the ratio of $\frac{y}{x}$ of a point on the unit circle. The ratio 1 is the tangent ratio of $\frac{\pi}{4}$ so one angle is $\frac{\pi}{4}$. The other angle that has the tangent ratio with the same value is the reflection of $\frac{\pi}{4}$ across the origin, so that angle is $\frac{5\pi}{4}$. Answer: $\frac{\pi}{4}$, $\frac{5\pi}{4}$ 21. Use the unit circle to find the measures of two angles, in degrees, whose cosine ratio is $\frac{\sqrt{3}}{2}$. The cosine ratio is the x —value of a point on the unit circle. The ratio $\frac{\sqrt{3}}{2}$ is the x —value of 30°. The other angle in the unit circle with the same x —value is a reflection across the x —axis, so that angle is 330°. **Answer**: 30°, 330° 22. Use the unit circle to find the measures of two angles, in radians, whose sine ratio is $\frac{\sqrt{3}}{2}$. The sine ratio is the y -value of a point on the unit circle. The ratio $\frac{\sqrt{3}}{2}$ is the y -value of $\frac{\pi}{3}$ so one angle is $\frac{\pi}{3}$. The other angle that has the same y -value is a reflection across the y -axis, so that angle is $\frac{2\pi}{3}$. Answer: $$\frac{\pi}{3}$$, $\frac{2\pi}{3}$ 23. Use the unit circle to find the measures of two angles, in degrees, whose tangent ratio is $-\sqrt{3}$. The tangent ratio is the ratio of $\frac{y}{x}$ of a point on the unit circle. The ratio $-\sqrt{3}$ is equivalent to the opposite of the tangent ratio $\frac{\sqrt{3}}{\frac{1}{2}}$. This is the tangent ratio of 60° so the opposite ratio is the tangent of the angle that is a reflection across the y —axis which is 120° . The other angle that has the tangent ratio with the same value is the reflection of 60° across the origin, so that angle is 300° . **Answer**: 120°, 300° 24. Use the unit circle to find the measures of two angles, in radians, whose sine ratio is 0. The sine ratio is the y —value of a point on the unit circle. The ratio 0 is the y —value of 0 radians so one angle is 0 radians. The other angle in the unit circle with the same value and sign of the sine ratio is the angle that is the mirror image of 0 radians across the y —axis, which is π . Answer: $0, \pi$ 25. Use the unit circle to find the measures of two angles, in degrees, whose cosine ratio is 0. The cosine ratio is the x —value of a point on the unit circle. The ratio 0 is the x —value of 90° . The other angle in the unit circle with the same x —value is a reflection across the x —axis, so that angle is 270° . **Answer**: 90°, 270° 26. Use the unit circle to find the measures of two angles, in radians, whose sine ratio is $-\frac{1}{2}$. The sine ratio is the y -value of a point on the unit circle. The ratio $-\frac{1}{2}$ is the opposite of the y -value of $\frac{\pi}{6}$ radians, which is a reflection of $\frac{\pi}{6}$ across the x -axis, so one angle is $\frac{11\pi}{6}$ radians. The other angle in the unit circle with the same value and sign of the sine ratio is the angle that is the mirror image of $\frac{\pi}{6}$ radians across the origin, which is $\frac{7\pi}{6}$. Answer: $\frac{7\pi}{6}$, $\frac{11\pi}{6}$ 27. Use the unit circle to find the measures of two angles, in degrees, whose cosine ratio is $-\frac{\sqrt{2}}{2}$. The cosine ratio is the x -value of a point on the unit circle. The ratio $-\frac{\sqrt{2}}{2}$ is the opposite of the x -value of 45° , which is a reflection of 45° across the y -axis, so one angle is 135° . The other angle in the unit circle with the same x -value is a reflection of 45° across the origin, so that angle is 225° . **Answer**: 135°, 225° 28. Use the unit circle to find the measures of two angles, in radians, whose tangent ratio is 0. The tangent ratio is the ratio of $\frac{y}{x}$ of a point on the unit circle. The ratio 0 is the opposite of the tangent ratio of 0 radians. The other angle that has the tangent ratio with the same value is the reflection of 0 radians across the y —axis, so that angle is π . Answer: $0, \pi$ 29. Use the unit circle to find the measures of two angles, in degrees, whose sine ratio is $\frac{1}{2}$. The sine ratio is the y —value of a point on the unit circle. The ratio $\frac{1}{2}$ is the y —value of 30° , so one angle is 30° . The other angle in the unit circle with the same value and sign of the sine ratio is the angle that is the mirror image of 30° radians across the y —axis, which is 150° . **Answer**: 30°, 150° 30. Use the unit circle to find the measures of two angles, in radians, whose tangent ratio is $-\frac{\sqrt{3}}{3}$. The tangent ratio is the ratio of $\frac{y}{x}$ of a point on the unit circle. The ratio $-\frac{\sqrt{3}}{3}$ is equivalent to the opposite of the tangent ratio $\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$. This is the tangent ratio of $\frac{\pi}{6}$ so the opposite ratio is the tangent of the angle that is a reflection across the x —axis which is $\frac{11\pi}{6}$. The other angle that has the tangent ratio with the same value is the reflection of $\frac{\pi}{6}$ across the y —axis, so that angle is $\frac{5\pi}{6}$. **Answer**: $\frac{5\pi}{6}$, $\frac{11\pi}{6}$