
The Ramanujan Journal
https://doi.org/10.1007/s11139-021-00500-0

Asymptotics of Chebyshev polynomials, V. residual
polynomials

Jacob S. Christiansen1 · Barry Simon2 ·Maxim Zinchenko3

Dedicated with great respect to the memory of Richard Askey, 1933–2019.

Received: 18 September 2020 / Accepted: 29 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
We study residual polynomials, R(e)

x0,n , e ⊂ R, x0 ∈ R\e, which are the degree at most
n polynomials with R(x0) = 1 that minimize the sup norm on e. New are upper bounds
on their norms (that are optimal in some cases) and Szegő–Widom asymptotics under
fairly general circumstances. We also discuss several illuminating examples and some
results in the complex case such as root asymptotics, a universal lower bound, and a
new characterization of sets saturating this lower bound.
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1 Introduction

Dick Askey was a great fan of Gabor Szegő as seen by his wonderful, readable notes
on Szegő’s papers in Szegő’s complete works [3], which Dick edited as a clear labor
of love. In particular, it is clear that Askey was fond of Szegő asymptotics so we are
pleased to be able to dedicate this paper on an extension of such asymptotics to Dick’s
memory. Even though Askey’s work was largely on the algebraic side of the theory
of orthogonal (and other) polynomials while our own has mainly been on the analytic
side, his work has been so deep and so broad that it has impacted us. In addition,
Dick’s warmth and kindness are legion.

Let e ⊂ C be a compact, not finite, set and z0 ∈ C\e a point which is fixed. For any
continuous, complex-valued function, f , on e let

‖ f ‖e ≡ sup
z∈e

| f (z)|. (1.1)

The residual polynomial, Rz0,n , of e normalized at z0 is the unique polynomial that
minimizes ‖P‖e over all polynomials, P , of degree at most n with P(z0) = 1. Such
polynomials have been studied in numerical analysis as they have applications to the
Krylov subspace iterations, see, for example, [10,15,22]. Recently they have also been
used to study the Remez inequality [12]. The residual norm is given by

rz0,n ≡ ‖Rz0,n‖e. (1.2)

We will use R(e)
z0,n and r (e)

z0,n when we want to be explicit about the underlying set.
Since Rz0,n could be of degree less than n, P = 1 and Rz0,n−1 are trial polynomials
and hence

rz0,n ≤ rz0,n−1 ≤ 1, n ∈ N. (1.3)

These polynomials are clearly related to the Chebyshev polynomials, T (e)
n , which

minimize the sup norm over e, t (e)n , among all monic polynomials. We will use heavily
ideas fromour papers [5–8] (the second jointwithYuditskii) discussing the asymptotics
of such polynomials. While many of the extensions are direct, there are often subtle
twists as we will see.

For the Chebyshev case, the dual problem of maximizing the leading coefficient of
all degree n polynomials with

‖Pn‖e = 1 (1.4)

is often useful and is trivially related to the minimization problem. Similarly, here the
dual problem of maximizing Pn(z0) over all degree at most n polynomials with (1.4)
will play a role. We will refer to the maximizers as dual residual polynomials and
write them as ˜Rz0,n .

Basic to the theory is logarithmic potential theory (see [32, Sect. 3.6] or [2,21,23,
25,26] for the basics of the subject). We will always assume that e is a non-polar set

123



Asymptotics of Chebyshev polynomials, V. residual polynomials

and let ρe, ge, and C(e) denote, respectively, the equilibrium measure, the Green’s
function, and the logarithmic capacity of e. In [5,6], we complexified the exponential
Green’s function exp[−ge(z)], initially using a harmonic conjugate of ge near z = ∞,
picking the branch so that this exponential looks likeCz−1+O(|z|−2) near infinitywith
C > 0 and then analytically continuing. This yields a multivalued analytic Blaschke-
type function, Be, on (C ∪ {∞})\e satisfying |Be(z)| = exp[−ge(z)]. In this paper,
the Be we need will differ by a phase factor as we’ll explain in detail in Sect. 5. We
normalize the the phase of Be so that Be(z0) > 0.

For a compact set e ⊂ C, the outer domain, �, of e is the unbounded component
of (C ∪ {∞})\e and the outer boundary O∂(e) of e is defined to be the boundary ∂�.
The set ê = (C ∪ {∞})\� is called the polynomial convex hull of e. Its boundary,
∂ ê, coincides with the outer boundary O∂(e). The Green’s function, ge, is positive on
� and vanishes on the interior of ê, see for example [27, Chapter I.4]. If e is regular
for potential theory (which we usually assume), ge vanishes on all of ê and hence
ê = {z ∈ C | ge(z) = 0} and � = {z ∈ C | ge(z) > 0}.

For many years, the most striking aspect of the asymptotics of Chebyshev poly-
nomials has been Widom’s great 1969 discovery [40] that the suitably renormalized
norms and asymptotics are almost periodic rather than a single limit. Not surprisingly,
our most important result here is that suitably renormalized rz0,n and Rz0,n(z) are
almost periodic, something which has not been hinted at in prior literature on residual
polynomials (for the related Ahlfors problem, results of this type have been obtained
by Eichinger–Yuditskii in [11]). In the work of Widom [40] on asymptotics of Cheby-
shev polynomials, a key object is tn/C(e)n , which, following Goncharov–Hatinoǧlu
[19], have come to be called Widom factors. In our situation the right analog, which
we will still call Widom factors, are

Wn(e, z0) ≡ rz0,n

(

enge(z0) + e−nge(z0)
)

, n ∈ N (1.5)

(see (1.8) below for why this is the correct normalization).
Section 2 will discuss a few general results on the general complex case including

uniqueness of the minimizer and root asymptotics for rz0,n and |Rz0,n|. There will also
be a universal lower bound analogous to Szegő’s result that tn ≥ C(e)n . Instead we
will show that

rz0,n ≥ exp[−nge(z0)] (1.6)

a result that has appeared many times in the literature. As a new contribution to the
subject, we characterize the sets e ⊂ C for which equality in (1.6) occurs for some n.

Most of the remainder of the paper focuses on the case when e and z0 = x0 are real.
In the Chebyshev case with e ⊂ R, a critical role is played by the alternation theorem
which goes back to Borel [4] and Markov [24]. The version for residual polynomials,
found byAchieser (akaAkhiezer) [1] in 1932, is subtly different. Section 3 begins with
a proof of this result for the reader’s convenience (given that the only proof we know
in the literature is not readily available and not in English). We then discuss a variety
of applications. Two unique to this situation (i.e., not relevant in the Chebyshev case)
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are the fact that dn ≡ deg(Rx0,n) is always n or n − 1 (in the general complex case,
the degree might be 0) and that the dual polynomial, ˜Rx0,n , is the same for all x0 in
the same connected component of R\e, so, in particular, it equals the dual Chebyshev
polynomial when x0 is in either of the unbounded components.

As in [5] for the Chebyshev case, the alternation theorem will let us show that

en ≡ R−1
x0,n

([−rx0,n, rx0,n]) (1.7)

(where we emphasize that we mean the inverse as a map from C to itself) is a subset
of R. This makes it what we called a period-dn set in [5], the spectrum of a period dn

Jacobi matrix, which allows many detailed results. In particular, we will prove that

2 ≤ Wn(e, x0) ≤ 2 exp[PW(e, x0)], n ∈ N, (1.8)

where PW(e, x0) is the Parreau–Widom constant of e defined in Sect. 3. The lower
bound in (1.8) is due to Schiefermayr [28,29]. The upper bound is new here although
it is an analog (with similar proof) of a result we proved for Chebyshev polynomials
in [5]. Both inequalities are sharp and there are even cases where they are exact
asymptotically for the lim inf and lim sup!

Section 4 will discuss various interesting examples and includes a discussion of
when deg(Rx0,n) is n − 1.

Finally, Sect. 5 proves Szegő–Widom asymptotics. To explain the main result of
that section, we briefly recall what we called the Widom surmise in [5]. The two
classical cases of Szegő asymptotics [30] concern limits of z−n Pn(z), z /∈ D for
OPUC and of [(z + √

z2 − 4)/2]−n Pn(z), z /∈ [−2, 2] for OPRL whose measures
have [−2, 2] as essential support. The limit is the Szegő function which is the solution
of a minimization problem. The prefactor in both cases is exactly what we called
Be(z)n and in both examples e has capacity 1 so a careful analysis suggests that one
include a factor of C(e)n . Indeed, Faber [13] proved that for e a closed Jordan region
with analytic boundary, the Chebyshev polynomials, T (e)

n , have what has come to be
called Szegő asymptotics (even though Faber’s paper was earlier than Szegő’s paper
on OPUC asymptotics!), namely, that

Be(z)
nTn(z)/C(e)n → 1 (1.9)

uniformly for z in compact subsets of �. Widom realized that (1.9) cannot hold when
� is not simply connected because the left side is not analytic on �; rather, it is
multivalued analytic. Indeed, there is a character, χe, of the fundamental group of �

so that Be(z) is character automorphic (we’ll recall what that means in Sect. 5) with
that character. We will call by the name Widom minimizer the character automorphic
function, F(z; x0, χ), which is the unique (by arguments in Widom [40], see also [6])
function with F(z = x0) = 1 minimizing the sup norm over �, ‖F‖�. Fixing x0,
we’ll use Fn for F( · , x0, χn

e ). The Widom surmise says that in the Chebyshev case,
the difference of the left side of (1.9) and Fn goes to zero uniformly on �. Our analog
replaces C(e) by e−ge(x0). As in the Chebyshev case, we’ll require that e obeys two
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conditions: Parreau–Widom (PW set) with a Direct Cauchy Theorem (DCT), notions
we will also recall in later sections. It says:

Theorem 1.1 Let e ⊂ R be a compact PW set with DCT and let x0 ∈ R\e. Then

lim
n→∞

[

enge(x0)‖Rx0,n‖e − 2‖Fn‖�

]

= 0 (1.10)

and uniformly for z in compact subsets of �,

lim
n→∞

[

enge(x0)Be(z)
n Rx0,n(z) − Fn(z)

]

= 0. (1.11)

Remarks 1. We’ll only provide a proof after Theorem 5.1 in Sect. 5.
2. Since the functions are multivalued, the proper formulation should talk about

analytic functions on the universal cover of �. We could just as well put in branch
cuts and discuss the functions and their boundary values on the cuts. Since the
difference is character automorphic, convergence in this cut region implies it on
the universal cover.

3. It is easy to see that (1.10) is equivalent to

lim
n→∞ [Wn(e, x0) − 2‖Fn‖�] = 0. (1.12)

4. Recall that Be is normalized by Be(x0) > 0. This implies that the quantity on the
left vanishes identically at x0.

5. Since ‖Be‖� = 1, (1.11) might suggest that (1.10) holds without the factor of
2. That they aren’t incompatible is because (1.11) doesn’t hold uniformly as one
approaches e = ∂�. One can partly understand where the factor of 2 comes from
by looking at the extra term we took in defining the Widom factor, (1.5), which
suggests that one should instead write (1.11) as

lim
n→∞

[

enge(x0) Rx0,n(z)Be(z)
n − Fn(z)(1 + Be(z)

2n)
]

= 0. (1.13)

Away from e, Be(z)2n is negligible, it is not on e, and, if the phase is coherent, the
limit can be twice as large.

6. It is Widom [40] who noticed that for Chebyshev polynomials on e = [−1, 1]
(which, up to a normalization constant, are the classical Chebyshev polynomials
of the first kind), the analog of Theorem 1.1 holds. He conjectured it holds in
general for finite gap sets but was only able to prove (1.10). That (1.11) holds for
general finite gap sets was the main result of [5]. The proof there used Widom’s
result rather than rederiving it. Fortunately, in [6], we found a proof of both facts
(for more general PW/DCT sets). Because we don’t a priori have the analog of
Widom’s result for residual rather than Chebyshev polynomials, it is the approach
of [6] that we’ll adapt to the setting of residual polynomials in this paper.
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2 Basic results

We begin with the case of e in general position in C and z0 ∈ C\e. If z0 is in a
bounded component of C\e, then, by the maximum principle, any polynomial, P ,
with P(z0) = 1 has ‖P‖e = ‖P‖ê ≥ 1 with strict inequality if P is not constant. So
in this case it follows that Rz0,n(z) ≡ 1 for all n. Thus, for non-trivial results it suffices
to consider cases with z0 in the unbounded component or alternatively assume that
e = ê.

As we noted in the introduction, there are dual residual polynomials, ˜Rz0,n , and
special values, r̃z0,n = ˜Rz0,n(z0). It is easy to see that the direct and dual problems are
related by

˜Rz0,n = Rz0,n/rz0,n; r̃z0,n = 1/rz0,n . (2.1)

There are twomain results for the general case that we want to mention, uniqueness
and root asymptotics. An extreme point for a polynomial P is a point z ∈ e for which
|P(z)| = ‖P‖e.
Theorem 2.1 (a) Any residual polynomial, R(e)

z0,n, has at least n + 1 extreme points.
(b) The degree n residual problem has a unique solution.

Remarks 1. There can be infinitely many extreme points, see Example 2.3.
2. This extends the argument given in [8] for Chebyshev polynomials and is well

known.

Proof (a) We claim that any norm minimizer, P , of degree at most n with P(z0) = 1
must have at least n + 1 extreme points. For, if there are only z1, . . . , zk with
k ≤ n distinct extreme points for P , then, by Lagrange interpolation, we can
find a polynomial Q of degree k so that Q(z0) = 0 and Q(z j ) = P(z j ), j =
1, . . . , k. Then for ε small and positive, it is easy to see that (P − εQ)(z0) = 1
and ‖P − εQ‖e < ‖P‖e violating the fact that P is a norm minimizer since
deg(P − εQ) ≤ deg(P) ≤ n.

(b) Suppose now that P and Q are both normminimizers amongpolynomials of degree
at most n taking the value 1 at z0. Then so is R = 1

2 (P + Q). Pick {z j }n+1
j=1 distinct

extreme points for R. Since |R(z j )| = rz0,n and |P(z j )|, |Q(z j )| ≤ rz0,n , we must
have that P(z j ) = Q(z j ) for j = 0, 1, . . . , n + 1. As deg(P − Q) ≤ n, we have
that P = Q completing the proof of uniqueness of the minimizing polynomial.

�

The first assertion in the following, which we’ll need for root asymptotics, appears

many times in the literature. The second assertion is an analog of a result we proved
for Chebyshev polynomials in [7].

Theorem 2.2 Let e ⊂ C be a compact non-polar set and z0 ∈ C\e. Then for all n ∈ N,

‖Rz0,n‖e ≥ exp[−nge(z0)] (2.2)
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with equality if z0 is in a bounded component of C\e. For z0 ∈ C\ê, equality in (2.2)
is attained for some n = n0 ∈ N if and only if there exists a polynomial P of degree
n0 such that

O∂(e) = P−1(∂D). (2.3)

In this case, Rz0,n0 is of degree n0 and equality in (2.2) is attained for n = kn0 for all
k ∈ N.

Proof The lower bound (2.2) follows from the Bernstein–Walsh inequality ( [27,
Chap. III, Eq. (2.4)] or [32, Theorem 3.7.1]) for Rz0,n ,

|Rz0,n(z)|
‖Rz0,n‖e ≤ exp[nge(z)], z ∈ C, (2.4)

evaluated at z = z0. If z0 is in a bounded component of C\e, then both sides of (2.2)
are equal to 1.

Now assume z0 is in the unbounded component of C\e (i.e., z0 ∈ C\ê) and
suppose equality is attained in (2.2) for n = n0. Consider the dual polynomial
P(z) := Rz0,n0(z)/‖Rz0,n0‖e. Then ‖P‖ê = 1 and hence

{z : |P(z)| > 1} ⊂ �. (2.5)

By (2.4), the function P Bn0
e , which is multivalued analytic on �, has ‖P Bn0

e ‖� ≤ 1.
Since Be(z0) > 0, the assumption of equality in (2.2) implies P(z0)Be(z0)n0 = 1 and
hence, by the maximum principle,

P Bn0
e = 1 on �. (2.6)

Thus on �, we have that |P(z)| = exp [n0ge(z)] and hence

� ⊂ {z : ge(z) > 0} ⊂ {z : |P(z)| > 1}. (2.7)

It follows from (2.5) and (2.7) that {z : |P(z)| > 1} = � and hence also the boundaries
of the sets are equal which is (2.3). Moreover, by (2.6) and the leading Cz−1 behavior
of Be(z) near infinity, one sees that deg(P) = deg(Rz0,n0) = n0.

Conversely, suppose (2.3) holds. Then ge(z) = 1
n0

log |P(z)| and so

exp[−kn0ge(z0)] = |P(z0)|−k . Let Q(z) = [P(z)/P(z0)]k . Then Q is of degree
kn0, Q(z0) = 1, and ‖Q‖e = |P(z0)|−k = exp[−nge(z0)] since ‖P‖e = 1. Using Q
as a trial polynomial, one has that ‖Rz0,n‖e ≤ ‖Q‖e, which implies equality in (2.2)
for n = kn0. �

Example 2.3 Let e = D and |z0| > 1. Then by the above, Rz0,n(z) = (z/z0)n so the
dual residual polynomial is equal to the dual Chebyshev polynomial (which is also
the Chebyshev polynomial). Moreover, every point in ∂e is an extreme point showing
there are infinitely many such points. Indeed, the above shows this is true for any
lemniscate (i.e., set of the form (2.3)).
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Theorem 2.4 Let e ⊂ C be a compact non-polar set and z0 ∈ C\e. Then

(a)

lim
n→∞‖Rz0,n‖1/n

e = exp[−ge(z0)]. (2.8)

(b) If K is a closed set containing all zeros of Rz0,n for large n, but not the point z0,
and so that C\K is connected, then

|Rz0,n(z)|1/n → exp[ge(z) − ge(z0)] (2.9)

uniformly on compact subsets of C\K .
In particular, if e ⊂ R, z0 ∈ R\e and (α, β) ⊂ R\e is an interval not containing
any zeros of Rz0,n for large n (this always holds for the gap of e containing z0),
then (2.9) holds uniformly on compact subsets of (C\R) ∪ (α, β).

Remarks 1. The analog of (a) for Chebyshev polynomials is sometimes called the
Faber–Fekete–Szegő theorem after [13,14,35]; the result for residual polynomials
appearsmany times in the literature, see for example [10,22]. (b)would be expected
by any attentive reader of Stahl–Totik [34] or Saff–Totik [27]; our proof here is
essentially the same as the analog for Chebyshev polynomials in [5].

2. The “in particular” assertion in (b) uses the fact that for real e all zeros of Rz0,n

are real, which we’ll prove in Theorem 3.7 (c). The fact that the gap of e ⊂ R

containing z0 is always free of zeros of Rz0,n will be proven in Theorem 3.7 (a).

Proof (a) Let Qn with deg(Qn) = n be Fekete polynomials [26, Definition 5.5.3] for
the set e. Then, by [26, Theorems 5.5.2 and 5.5.7], locally uniformly on C\e, one has
that

( |Qn(z)|
‖Qn‖e

)1/n

→ exp[ge(z)]. (2.10)

Since Rz0,n is a norm minimizer, ‖Rz0,n‖e ≤ ‖Qn/Qn(z0)‖e and hence

lim sup
n→∞

‖Rz0,n‖1/n
e ≤ lim sup

n→∞

( ‖Qn‖e
|Qn(z0)|

)1/n

= exp[−ge(z0)]. (2.11)

Combined with the lower bound (2.2), this yields (2.8).
(b) It follows from the Bernstein–Walsh inequality (2.4) that

|Rz0,n(z)|1/n ≤ ‖Rz0,n‖1/n
e exp[ge(z)]. (2.12)

Moreover, by assumption, for n sufficiently large all the zeros of Rz0,n lie in K . Thus,
the function

hn(z) = 1

n
log‖Rz0,n‖e + ge(z) − 1

n
log |Rz0,n(z)| (2.13)
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is non-negative and harmonic on C\K . Since hn(z0) → 0 by part (a), Harnack’s
inequality implies that hn → 0 uniformly on compact subsets of C\K . �


3 Alternation theorem and consequences

Recall the following definition and theorem of Borel [4] and Markov [24] critical for
the understanding of Chebyshev polynomials on subsets of R.

Definition 3.1 Let e ⊂ R be compact. We say that Pn , a degree n polynomial, has an
alternating set in e if there exists n+1 points, {x j }n+1

j=1 ⊂ e, with x1 < x2 < · · · < xn+1
so that

Pn(x j ) = (−1)n+1− j‖Pn‖e, j = 1, . . . , n + 1. (3.1)

Theorem 3.2 (The Alternation Theorem for Chebyshev Polynomials) Let e ⊂ R be
compact. The Chebyshev polynomial of degree n for e has an alternating set in e. Con-
versely, any monic polynomial with an alternating set in e is the Chebyshev polynomial
for e.

For a proof, see [5]. The analog for residual polynomials is due to Achieser [1].

Definition 3.3 Let e ⊂ R be compact and x0 ∈ R\e. We say that Pn , a degree at most
n polynomial, has an x0-alternating set in e if there exists n + 1 points, {x j }n+1

j=1 ⊂ e,
with x1 < x2 < · · · < xk < x0 < xk+1 < · · · < xn+1 for some k ∈ {0, 1, . . . , n + 1}
so that

Pn(x j ) = (−1)k+1− j sgn(x j − x0)‖Pn‖e, j = 1, . . . , n + 1. (3.2)

Remark 3.4 k = 0 (resp. k = n + 1) means that x0 < x1 (resp. xn+1 < x0) and, in
that case (up to a possible sign change), (3.2) is the same as (3.1).

Theorem 3.5 (The Alternation Theorem for Residual Polynomials [1]) Let e ⊂ R be
compact and x0 ∈ R\e. The residual polynomial, Rx0,n, of degree at most n for e has
an x0-alternating set in e. Conversely, any polynomial, P, with an x0-alternating set
in e and with P(x0) = 1 is the Rx0,n polynomial for e.

Proof Suppose that P is a polynomial with P(x0) = 1 and so that (3.2) holds. If P
is not a norm minimizer, then ‖Rx0,n‖e < ‖P‖e. Consider the polynomial Q(x) =
[P(x) − Rx0,n(x)]/(x − x0). It has degree at most n − 1 and alternating signs at
x1, . . . , xn+1, hence a zero in each of the intervals (x j , x j+1), j = 1, . . . , n. It follows
that Q is identically zero, a contradiction. Thus P is a norm minimizer.

Conversely, suppose P ≡ Rx0,n and sgn(x−x0)P(x) has atmost n−1 sign changes
on the set of extreme points of P . Then, by putting zeros in the right places, there exists
a polynomial Q0 of degree at most n −1 such that sgn(Q0(x)) = sgn(P(x)/(x − x0))
for each extreme points of P . Thus the polynomial Q(x) = (x − x0)Q0(x) has degree
at most n, (P − εQ)(x0) = 1, and ‖P − εQ‖e < ‖P‖e for sufficiently small ε > 0
contradicting the fact that P is a norm minimizer. Therefore an alternating set exists.

�
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This shows that Rx0,n has at least n+1 extreme points so proving uniqueness again.
Uniqueness (and consideration of Rx0,n(x̄)) shows that all the coefficients of Rx0,n are
real. Besides this, the Alternation Theorem has lots of immediate corollaries, many of
which are so important that we will call them theorems. For the rest of this section,
we will suppose that e ⊂ R is compact and x0 ∈ R\e. We will let x± be the sup/inf of
e and k the integer specified in the definition of x0-alternating set.

Theorem 3.6 The dual residual polynomials ˜Rx0,n do not change as x0 varies through
the same connected component of R\e, equivalently, if x0, y0 are in the same connected
component of R\e, we have that

Ry0,n(x) = Rx0,n(x)/Rx0,n(y0). (3.3)

In particular, if x0 ∈ R\[x−, x+] then

Rx0,n(x) = T (e)
n (x)/T (e)

n (x0). (3.4)

Proof As we noted already, if x0 ∈ R\[x−, x+], then an x0-alternating set is an
alternating set so, by Theorem 3.2, up to a constant, Rx0,n is the ordinary Chebyshev
polynomial. It follows that Rx0,n is non-vanishing outside [x−, x+] so (3.3) holds. In
(a) of Theorem 3.7, we’ll prove (without using this theorem) that if x0 is in a bounded
component of R\e, then Rx0,n is non-vanishing on that component so for y0 in the
same component, the polynomial on the right side of (3.3) has a y0-alternating set and
is normalized properly and so is Ry0,n . It is easy to see that (3.3) proves equality of
the dual residual polynomials. �


As we noted, if k = 0 or k = n + 1 then Rx0,n is a constant multiple of the ordi-
nary Chebyshev polynomial whose structure we know. In particular, for the ordinary
Chebyshev polynomial the inf and sup of e are the alternation points x1 and xn+1,
respectively, and hence k = 0 (resp. k = n +1) happens if and only if x0 ∈ (−∞, x−)

(resp. x0 ∈ (x+,∞)). Henceforth, we will suppose that 1 ≤ k ≤ n and that x0 lies in
a bounded component, (α, β), of R\e.
Theorem 3.7 (a) Rx0,n(x) has at least n − 1 zeros in (x−, xk) ∪ (xk+1, x+) and no

zeros in [xk, xk+1].
(b) dn ≡ deg(Rx0,n) is either n or n − 1.
(c) All zeros of Rx0,n(x) are real and simple.

Remarks Part (b) has been observed earlier in [28, Corollary 2].

Proof (a) There are k − 1 disjoint intervals, (x1, x2), . . . , (xk−1, xk) in (x−, xk), each
with an odd number of zeros (counting multiplicity) and similarly, n − k such
intervals in (xk+1, x+). Furthermore, there is an even number of zeros (counting
multiplicity and including 0 as even) in (xk, xk+1). Since there are n − 1 odd zero
intervals and at most n zeros, each odd number interval must have exactly one
zero, so simple, and (xk, xk+1) cannot have any zeros.

(b) We have proven that Rx0,n has at least n − 1 zeros so its degree must be at least
n − 1 and is, by definition, at most n.
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(c) We have proven in (a) that Rx0,n has at least n − 1 simple real zeros. If it is of
degree n, its last zero must also be simple and, since Rx0,n is real and non-real
zeros come in complex conjugate pairs, the n-th zero must also be real.

�

Theorem 3.8 Suppose that 1 < k < n.

(a) The derivative, R′
x0,n(x), has at least k−2 zeros (counting multiplicity) in (x−, xk),

at least n − k − 1 zeros in (xk+1, x+), and at least one zero in [xk, xk+1].
(b) All zeros of R′

x0,n(x) are real and simple.
(c) Rx0,n(x) > rx0,n on (xk, xk+1).
(d) xk = α and xk+1 = β.
(e) Either x1 = x− or xn+1 = x+ (or both).

Proof (a) We startwith the assertion that R′
x0,n has at least n−k−1 zeros in (xk+1, x+).

There is nothing to prove unless n ≥ k + 2. Since Rx0,n(xk+1) = Rx0,n(xk+3) =
rx0,n and Rx0,n(xk+2) = −rx0,n , Rx0,n must have at least one minimum point in
(xk+1, xk+3) and so a point where R′

x0,n vanishes. If n = k + 2, we have the one
required zero. If n > k +2, we can find a maximum in (xk+2, xk+4). Proceeding in
this way we get the required n − k − 1 zeros of R′

x0,n and similarly, we get at least
k − 2 zeros in (x−, xk). This accounts for at least n − 3 zeros out of a maximum
possible n − 1 (which is the maximum degree of R′

x0,n).
We have that Rx0,n(xk) = Rx0,n(xk+1) = rx0,n < 1 = Rx0,n(x0) so Rx0,n has a
maximum point in (xk, xk+1) and so a point where R′

x0,n must vanish.
(b) All the zeros of R′

x0,n found in (a) are local maxima or local minima and so points
where R′

x0,n has odd order zeros. Since there are n − 2 such points, none can have
a zero of order 3 or more and thus all must be simple. The remaining zero must
also be simple and, by reality of R′

x0,n , real.
(c) The same argument (from the proof of Theorem 3.7 (a)) that proved Rx0,n has

no zeros in (xk, xk+1), shows it cannot take any value in (−rx0,n, rx0,n). Since
that interval is connected and Rx0,n(x0) = 1 > rx0,n , we conclude that on that
interval we have that Rx0,n(x) ≥ rx0,n . If there were a point, y0, in the open interval
with Rx0,n(y0) = rx0,n , then on the interval, Rx0,n would have at least one local
minimum (at y0) and two local maxima (by Rolle’s theorem), so three zeros of
R′

x0,n in the interval which cannot happen because we’ve found n −3 zeros outside
that interval out of at most n − 1 in total.

(d) Since α ∈ [xk, x0) and Rx0,n(α) ≤ rx0,n (because α ∈ e)), (c) implies that α = xk .
Similarly, β = xk+1.

(e) We will defer the proof of this to later. See the third remark after Proposition 3.10.
�


Theorem 3.9 If deg(Rx0,n) = n − 1, then

(a) We have that Rx0,n(x) = Tn−1(x)/Tn−1(x0), where Tn−1 is the Chebyshev poly-
nomial for e of degree n − 1.

(b) Rx0,n−1 = Rx0,n.

Proof (a) If we drop xk+1, we get an ordinary alternating polynomial, so Rx0,n is a
multiple of the Chebyshev polynomial Tn−1.

123



J. S. Christiansen et al.

(b) If we drop xn+1, we get a trial polynomial for the Rx0,n−1 problem with an
x0-alternating set. �

Next, we turn to the idea of using Rx0,n to approximate ewith the spectra of periodic

Jacobi matrices, an idea that was so useful in the Chebyshev case [5]. Given e ⊂ R

and x0 ∈ R\e, we define the period-dn sets

e◦n = R−1
x0,n

(

(−rx0,n, rx0,n)
); en = R−1

x0,n

([−rx0,n, rx0,n]), (3.5)

where we consider the inverses as maps fromC to itself (so that, by the open mapping
theorem, en is the closure of e◦n) although it will turn out the sets are subsets of R.
We will denote the equilibrium measure, the Green’s function, and the corresponding
Blaschke-type function (normalized so that Bn(x0) > 0) of en by ρn , gn , and Bn ,
respectively.

Proposition 3.10 Let e ⊂ R and x0 ∈ R\e. Then

(a) The set e◦n is a subset of R and has dn connected components, each an interval of
en-harmonic measure 1/dn.

(b) e ⊂ en ⊂ R and each gap of e, including the “unbounded gap” (−∞, x−) ∪
(x+,∞), intersects with at most one component of e◦n. The gap of e containing x0
does not intersect en. If dn = n −1 then also the unbounded gap does not intersect
en.

(c) The equilibrium measure, ρn, of each gap of e is at most 1/dn.
(d) In any component of R\e, Rx0,n has at most one zero.

Remarks 1. We recall that the g-harmonic measure of a set f ⊂ g is ρg(f).
2. Since en is bounded and components of e◦n are connected, by (b), either

ρn((−∞, x−)) = 0 or ρn((x+,∞)) = 0 (or both).
3. Theorem 3.8 (e) follows from the proof of Proposition 3.10 (b).
4. The fact that e ⊂ en ⊂ R and en consists of at most dn intervals was observed

earlier in [28, Lemma 2].

Proof As noted before, if x0 ∈ R\[x−, x+] then Rx0,n is a constant multiple of the
Chebyshev polynomial, Tn . Likewise, if dn = n − 1 then, by Theorem 3.9 (a), the
residual polynomial Rx0,n is a constant multiple of the Chebyshev polynomial, Tn−1.
In those cases the Proposition follows from the corresponding result for Chebyshev
polynomials [5, Theorems 2.3 and 2.4]. Thus, in the following we assume dn = n and
that x0 lies in a bounded component of R\e.
(a) Let {x j }n+1

j=1 ⊂ e be as in the alternation theorem, and let 1 ≤ k ≤ n be so that
x0 ∈ (xk, xk+1). Then by (3.2) and the intermediate value theorem, the residual
polynomial Rx0,n attains each value y ∈ (−rx0,n, rx0,n) in the n − 1 intervals
(x j , x j+1), j = 1, . . . , k −1, k +1, . . . , n an odd number of times which accounts
for all the pre-images of y but one. By reality of Rx0,n , the remaining solution is
also in R and so all values occur once proving that there are n distinct intervals in
e◦n . Hence e◦n lies on the real line and so, by the open mapping theorem, does en .
By Theorem 3.11 below, e◦n consists of n components each of harmonic measure
1/n.
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(b) The analysis of taking the values in (−rx0,n, rx0,n) shows that e◦n has alternating
intervals where Rx0,n increases and decreases. It follows that Rx0,n , which has 2n
points (counting multiplicity) where it takes the values ±rx0,n , must have those
points (listed in increasing order) as one of one sign, then successive pairs (counting
multiplicity of solutions of Rx0,n ± rx0,n = 0) of the same sign (opposite to the
previous sign), ending in a singlet. It is easy to see that to have the requisite number
of sign changes, the alternating set must contain both extreme points at the end of
the gap containing x0, one from each of the remaining n − 2 pairs and one of the
two singlets. It follows that each gap of e◦n (including the case of touching gaps)
must have at least one end in e. If some gap of e contained parts of two bands from
en , it would contain the closure of the entire gap between them which violates the
conclusion we reached that such gaps have an endpoint in e. Thus at most one
component of en intersects any gap of e as claimed. Theorem 3.8 (c) implies that
the gap containing x0 is disjoint from en .

(c) Since, by (b), each gap of e intersects at most one component of e◦n and, by (a), the
equilibrium measure ρn of each component of e◦n is 1/n, it follows that ρn of each
gap of e is at most 1/n.

(d) Between any two zeros of Rx0,n , there are a pair of extreme points (counting
multiplicity of solutions of Rx0,n ± rx0,n = 0) with the same sign. Since one of
those points must lie in e, the two zeros can’t lie in the same gap. �

What makes these sets useful is that there are explicit formulae for gn and Bn in

terms of Rx0,n . It will be convenient to introduce

	n(z) ≡ 2Rx0,n(z)/‖Rx0,n‖e. (3.6)

Then

Theorem 3.11 If e ⊂ R and x0 ∈ R\e, then for all z ∈ C we have that

gn(z) = 1

dn

(

g[−2,2] ◦ 	n
)

(z) = 1

dn
log

∣

∣

∣

∣

∣

∣

	n(z)

2
+

√

(

	n(z)

2

)2

− 1

∣

∣

∣

∣

∣

∣

. (3.7)

This implies that each open component of e◦n has en-harmonic measure 1/n. Moreover

Bn(z)
±dn = 	n(z)

2
∓

√

(

	n(z)

2

)2

− 1 (3.8)

and

2Rx0,n(z)

‖Rx0,n‖e = 	n(z) = Bn(z)
dn + Bn(z)

−dn . (3.9)

In particular, evaluating (3.9) at z = x0 implies that

‖Rx0,n‖e = 1/ cosh
(

dngn(x0)
)

. (3.10)
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Remarks 1. (3.10) shows why we normalize the Widom factor in (1.5) as we do; it
shows that Wn(en, x0) = 2 (the Alternation Theorem implies that R(en)

x0,n = R(e)
x0,n).

2. This shows that en is the spectrum of a periodic Jacobi matrix. 	n is either
its discriminant or its negative (depending on whether Rx0,n determined by
Rx0,n(x0) = 1 has leading positive or negative coefficient).

3. Recall that Bn is normalized so that Bn(x0) > 0.

Proof Essentially, the same as [5, Theorems 2.2 and 2.3]. The function in absolute
value in (3.7) is analytic and non-vanishing on en (where there is a square root branch
cut) and has magnitude 1 on en . It is discontinuous across the cut but its magnitude is
continuous. Thus the quantity on the right of that equation is harmonic onC\en with a
logarithmic singularity at∞. Thus it is the Green’s function as claimed. The remainder
is immediate given the calculation of the harmonic measure in [5, Theorem 2.3]. �


As a corollary, we get the lower bound of Schiefermayr [28,29] by a proof which
can be viewed essentially as a reworking of his proof (the characterization of when
equality holds is an extension of [28] as we do not apriori assume that e is a finite
union of intervals):

Corollary 3.12 If e ⊂ R and x0 ∈ R\e, then for all n ∈ N,

‖Rx0,n‖e ≥ 2

enge(x0) + e−nge(x0)
(3.11)

or equivalently, by (1.5),

Wn(e, x0) ≥ 2. (3.12)

Equality is attained in (3.11) if and only if dn = n and e = en (equivalently, e is a finite
gap set with at most n components, each of which has harmonic measure an integral
multiple of 1/n).

Proof Since e ⊂ en , we have that

ge(z) ≥ gn(z) (3.13)

for all z ∈ C. As cosh is monotone on (0,∞) and dn ≤ n, it follows that
cosh(nge(x0)) ≥ cosh(dngn(x0)). Thus, by (3.10),

‖Rx0,n‖e = 1/ cosh
(

dngn(x0)
) ≥ 1/ cosh

(

nge(x0)
)

, (3.14)

which is (3.11).
This also shows that equality holds if and only if dn = n and gn(x0) = ge(x0)

(because cosh is strictly monotone). If en = e, the Green’s functions are clearly equal
at x0. Conversely, if one has equality at x0, then the inequality (3.13) plus Harnack’s
theorem implies equality of the Green’s functions in the upper half-plane. Since en is
a polynomial pre-image of an interval, en is regular for potential theory and so gn is
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continuous onC and vanishes on en . Then gn = ge in the upper half-plane implies that
gn = ge > 0 on C\e and hence en ⊂ e. Since e ⊂ en by construction of en , equality
of the sets follows. �


We now turn to the question of upper bounds on ‖Rx0,n‖e that differ from the
lower bounds by only a constant. For norms of Chebyshev polynomials, such upper
bounds were proven for e ⊂ R, a compact finite gap set, by Widom [40] and Totik
[36]. While these bounds did not have explicit constants, in [5] we called new bounds
with explicit (and in many cases optimal) constant, Totik–Widom upper bounds and
we use that name here for analogous bounds of residual polynomials even though,
so far as we know, there are no prior such bounds in the literature. These require us
to define suitable Parreau–Widom constants for a compact set e ⊂ C relative to a
point z0 ∈ C\e with ge(z0) > 0 (this last condition is true if and only if z0 is in the
unbounded component ofC\e). Introducing the set f := {

(z − z0)−1 : z ∈ e
}

, we have
that ge(z, z0) ≡ gf((z − z0)−1) is the Green’s function for ewith singularity at z0. We
note the well-known fact ([32, (3.8.46)]) that ge(z, w) = ge(w, z) so, in particular,

ge(∞, z0) = ge(z0). (3.15)

Define

C =
{

z0 + z−1 : z ∈ C\f such that ∇gf(z) = 0
}

. (3.16)

This means C is precisely the set of ordinary finite critical points of ge( · , z0) plus
infinity if it is a critical point in local coordinates. We define the PW constant for e
relative to z0 by

PW(e, z0) ≡ PW(f) =
∑

c j ∈C
ge(c j , z0). (3.17)

It is known that PW(e, z0) < ∞ if and only if PW(e) < ∞. See, e.g., Hasumi
[20, Chapter V]. If that holds, we say that e is a PW set. As with ge(z), for any
w ∈ C\e, w �= x0, we define the Blaschke type function, Be(z, w), as the unique
multivalued analytic function with |Be(z, w)| = exp [−ge(z, w)] and Be(x0, w) > 0.

Turning to the real case, we recall that if f ⊂ R is compact, then all critical points
of gf are in R. Since gf is strictly concave on R\f, there are no critical points in the
two unbounded components ofR\f and precisely one in each finite component. If now
x0 ∈ R is in the complement of a compact set e ⊂ R, this translates into a similar
property for the critical points of ge( · , x0). Namely, C ⊂ (R ∪ {∞})\e and each gap
of e, except the gap containing x0 together with (−∞, x−)∪ (x+,∞)∪{∞}, contains
exactly one point of C and ge( · , x0) attains its maximum in the gap exactly at this
point.

As a second application of (3.10), we now derive the Totik–Widom upper bound
for the Widom factors of the residual polynomials:
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Theorem 3.13 Let e ⊂ R be a regular, not connected, compact PW set and let x0 ∈
R\e. Then

Wn(e, x0) < 2 exp[PW(e, x0)], n ∈ N. (3.18)

Moreover, equality holds in the limit for a subsequence n j → ∞ if and only if, for any
gap of e, Pn j has a zero in that gap for j large which approaches the unique critical
point of ge( · , x0) as j → ∞ and the component of en j in that gap shrinks to that
critical point as j → ∞.

Remarks 1. It can be shown that whenever the zeros in some gap converge to a limit
in that gap, the corresponding component of en j in that gap shrinks to that point
exponentially fast, so, in the final assertion, we could drop the last clause.

2. If e is an interval, then for all n,Wn(x0, e) = 2 (by (3.10)), so sincePW(e, x0) = 0,
we have equality in (3.18), which is why we have the condition “not connected”.

Proof The proof follows that of the analog we used in the Chebyshev case in [5]. As
there, we start by recallingwhy if f is a non-polar, compact subset ofC, the equilibrium
measure, dρf, is also called harmonic measure. For one can show (see Conway [9] or
Simon [32, Corollary 3.6.28]) that if f is a continuous function on f, there is a unique
function, u f , harmonic on (C ∪ {∞})\f, which approaches f (x) for q.e. x ∈ f (i.e.,
solves the Dirichlet problem) and so that

u f (∞) =
∫

f
f (x)dρf(x). (3.19)

The function u f (z) = ge(z, x0) − gn(z, x0) is harmonic on (C ∪ {∞})\en (because
the logarithmic singularities at x = x0 cancel and lead to a removable singular point).
By (3.15), we have that u f (∞) = ge(x0) − gn(x0). Moreover, the limiting value of
u f on e is 0 (since e ⊂ en) and is ge(x, x0) for x ∈ en\e. Therefore, by (3.19) with
f = en ,

ge(x0) − gn(x0) =
∫

en\e
ge(x, x0) dρn(x). (3.20)

By Proposition 3.10 (a), ρn of each gap of e is at most 1/dn .
First, suppose dn = n. Then, summing over gaps in (3.20) and using the fact that

the maximum of ge(x, x0) in a gap, G j , is at the critical point, c j , we have

ge(x0) − gn(x0) ≤ 1

dn

∑

c j ∈C
ge(c j , x0) = 1

dn
PW(e, x0). (3.21)

Then using (3.10) and the fact that

gn(x0) ≤ ge(x0) ⇒ (

1 + e−2dn gn(x0)
)−1 ≤ (

1 + e−2dn ge(x0)
)−1 (3.22)
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we get

‖Rx0,n‖e = 2

edn gn(x0) + e−dn gn(x0)
= 2e−dn gn(x0)

1 + e−2dn gn(x0)

≤ 2e−dn ge(x0)ePW(e,x0)

1 + e−2dn ge(x0)
= 2ePW(e,x0)

edn ge(x0) + e−dn ge(x0)
. (3.23)

By (1.5), this is the desired bound (3.18) in the case dn = n.
Next, suppose dn = n−1. In this case, by Proposition 3.10 (b), en does not intersect

the “unbounded gap” of e (i.e., (−∞, x−)∪ (x+,∞)∪{∞}). Let C′ = C\{c∞}, where
c∞ is the critical/maximum point of ge( · , x0) in the unbounded gap. Then

ge(x0) − gn(x0) =
∫

en\e
ge(x, x0) dρn(x) ≤ 1

dn

∑

c j ∈C′
ge(c j , x0) (3.24)

and since, by (3.15), ge(x0) = ge(∞, x0) ≤ ge(c∞, x0), we have

(

1 + 1

dn

)

ge(x0) − gn(x0) ≤ 1

dn

∑

c j ∈C
ge(c j , x0) = 1

dn
PW(e, x0). (3.25)

So using (3.10) and the fact that dngn(x0) ≤ (dn + 1)ge(x0) implies

(

1 + e−2dn gn(x0)
)−1 ≤ (

1 + e−2(dn+1)ge(x0)
)−1 (3.26)

we get

‖Rx0,n‖e = 2

edn gn(x0) + e−dn gn(x0)
= 2e−dn gn(x0)

1 + e−2dn gn(x0)
(3.27)

≤ 2e−(dn+1)ge(x0)ePW(e,x0)

1 + e−2(dn+1)ge(x0)
= 2ePW(e,x0)

e(dn+1)ge(x0) + e−(dn+1)ge(x0)
.

By (1.5), this is the desired bound (3.18) in the case dn = n − 1.
Because n j → ∞, asymptotic equality in (3.18) is equivalent to

lim j→∞ rx0,n j e
n j ge(x0) = 2 exp [PW(e, x0)] which, by (3.10), is equivalent to

lim j→∞ dn j [ge(x0) − gn j (x0)] = PW(e, x0). By (3.20) and dominated convergence
for sums, this is equivalent to knowing that for each fixed gap, G, of R\e, one has that
dn j ρn j (G ∩ en j ) = 1 and that G ∩ en j is more and more concentrated about c, the
critical point that lies in G. �


We close this section with a sufficient condition for saturation of the lower bound
in the limit which is complementary to the final result in the last theorem.

Theorem 3.14 Equality in (3.12) holds in the limit for a subsequence n j → ∞ if, for
any gap, G, of e, one has that maxy∈en j ∩G dist(y, e) → 0.
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Remarks 1. With a littlemore effort, it should be possible to prove the stated sufficient
condition is necessary. The point is that we expect if in the limit, en j ∩ G contains
some point, y, then as j → ∞, en j ∩G contains an entire band concentrated about
y which contributes ge(y, x0) > 0 to dn j times the integral on the right of (3.20).

2. The sufficient condition of this theorem for a gap, G, is equivalent to one that says
for large n j , any zero of Pn j in G must approach the edges of G.

Proof As in the last paragraph of the last proof, one has asymptotic equality in (3.12)
if and only if lim j→∞ dn j [ge(x0)−gn j (x0)] = 0. By the dominated converge theorem
for sums and (3.20), this happens if and only if for any gap, Gk , one has that

lim
j→∞

∫

en j ∩Gk

ge(x, x0) dρn j (x) = 0. (3.28)

Since ge(·, x0) → 0 at the edges and dnρn(Gk) is at most 1, this follows from the
assumption that maxy∈en j ∩Gk dist(y, e) → 0. �


4 Some examples

This section will discuss some illuminating examples, the first two (as well as Exam-
ple 2.3 on lemniscates) deal with the complex case and the others with the real case that
has been ourmain focus here. In discussing some asymptotics, the classical Chebyshev
polynomials of the first kind, which we denote by Cn , will be useful:

Cn(cos(θ)) ≡ cos(nθ). (4.1)

Despite the name, they are not Chebyshev polynomials since they are not monic
although they are multiples of and, indeed, dual Chebyshev polynomials for [−1, 1].
We note their asymptotics which is classical (but also a special case of the results in
[5,6])

Cn(z) ∼ 1

2

[

z + √
z2 − 1

2

]n

. (4.2)

Example 4.1 (Cases with n-fold symmetry and deg(Rz0, j ) = 0) As mentioned in
Sect. 2, if z0 is in a bounded component of C\e, then Rz0,n(z) ≡ 1 for all n. Thus,
to get non-trivial results we should only consider cases with z0 in the unbounded
component. We consider z0 = 0. If e is invariant under rotation by angle 2π/n about
0, then uniqueness of R implies that Rz0=0, j (e2π/ j z) = Rz0=0, j (z) for all j , so the
only terms that are allowed in R are of the form cknzkn; k = 0, 1, . . .. It follows that
Rz0=0, j (z) = 1 for 0 ≤ j ≤ n − 1. It can even happen that this holds for j = n
(and so for j = n + 1, . . . , 2n − 1) for suppose that 1, eiπ/n ∈ e. Noticing that for
any c ∈ C, one has that |1 + c|2 + |1 − c|2 = 2(1 + |c|2), we see that, for c �= 0,
if P(z) = 1 + czn , either |P(1)| > 1 or |P(eiπ/n)| > 1 and thus we also have that

123



Asymptotics of Chebyshev polynomials, V. residual polynomials

Rz0=0,n(z) = 1. It is easy to find proper, closed, perfect subsets of ∂Dwhich are n-fold
invariant containing all the 2n-th roots of unity. In this way, one can construct, for any
finite m, n fold invariant sets with Rz0=0, j (z) = 1 for 0 ≤ j ≤ mn − 1. However, we
note that, by Theorem 2.4 (a), if z0 is in the unbounded component, for any fixed e,
we have that deg(R(e)

z0, j ) → ∞ as j → ∞.

Example 4.2 (e = [−1, 1]; z0 /∈ R) Let e = [−1, 1]. As we’ve seen, if x0 ∈ R\e, then

Rx0,n(x) = Cn(x)/Cn(x0); rx0,n = 1/|Cn(x0)|. (4.3)

This is so simple it is natural to guess, or at least hope, that it extends to complex z0.
But it does not. The dual residual problem was solved when z0 is on the imaginary
axis by Freund–Ruscheweyh [18] and for general z0 ∈ C\e by Yuditskii [41]. The
formula for rz0,n is quite complicated using elliptic functions. Here, we only make a
few remarks. We first note that 1/|Cn(z0)| diverges as z0 approaches a zero on the real
axis while, of course, rz0,n ≤ 1. Indeed, in the entire lemniscate {z : |Cn(z)| < 1},
one has that rz0,n < 1/|Cn(z0)|. But much more is true. Take n = 1 and let Pε(z) =
(z + iε)/(z0 + iε) when Im(z0) > 0 and ε > 0. Then

‖Pε‖2e = 1 + ε2

|z0|2 + ε2 + 2 Im(z0)ε
<

1

|z0|2 (4.4)

for ε small. This shows that everywhere off R, one has that rz0,n=1 < 1/|Cn=1(z0)|
and Yuditskii’s work implies the analog for all n.

It is natural to also consider the residual polynomials of an ellipse with foci on the
real line. In this case the polynomials Cn(z)/Cn(z0) may or may not be the residual
polynomials even when the point z0 is real and outside the ellipse. It depends on the
configuration; see [16,17] for further details.

Example 4.3 (n = 1, x0 ∈ R) There is no maximum principle for general polynomials
on R but there is for affine functions, which unless they are constant take their max-
imum over a bounded closed interval at an endpoint. It follows that if e ⊂ R and x0
is contained in a real gap of R\e, then Rx0,n=1(z) ≡ 1 showing that it can very often
happen that deg(Rx0,n) = n − 1. Of course, Rx0,n ≡ 1 can only happen for n = 1, 0
by Theorem 3.5 (b).

Example 4.4 (e reflection invariant about x0 = 0) The only real analog of the n-fold
symmetry of Example 4.1 is 2-fold symmetry of sets e ⊂ R with the property that
x ∈ e ⇒ −x ∈ e. We also suppose 0 /∈ e and take x0 = 0. As in Example 4.1, the
Rx0=0,n are even polynomials and thus deg(Rx0=0,2n+1) = 2n.With Tn the Chebyshev
polynomials, it therefore follows from Theorem 3.9 that

Rx0=0,2n+1(x) = Rx0=0,2n(x) = T2n(x)/T2n(0). (4.5)

It is interesting to see how existence of the limits in (1.10) and (1.11) for some sequence
of even n j → ∞ implies the existence of limits for n j +1 → ∞ and what the relation
has to be of the limit Fn to the limiting Fn+1.
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Example 4.5 (e = [−b,−a] ∪ [a, b] for 0 < a < b, x0 = 0) This special case of
Example 4.4 has explicit formulae. Let q be the quadratic polynomial

q(z) = 2(z2 − a2) − (b2 − a2)

b2 − a2 (4.6)

picked so that q(±a) = −1, q(±b) = 1 which implies that e = q−1([−1, 1]) and
that ge(z) = 1

2g[−1,1](q(z)) which in turn implies that

Be(z)
2 = B[−1,1]

(

q(z)
)

. (4.7)

This function is thus single-valued, so χ2
e ≡ 1, indeed χe(γ ) = (−1)#(γ ) where #(γ )

is the number of times that γ winds around [−a,−b] plus the number of times it winds
around [a, b]. The Widom minimizer for χ2n

e is thus 1 and (1.11) implies that

lim
n→∞ e2nge(x0=0)Be(z)

2n Rx0=0,2n(z) = 1 (4.8)

for all z ∈ C\e. Since T (e)
2k (z) = T [−1,1]

k (q(z)) and Rx0=0,2n is given by (4.5), this is
consistent with (4.2). For n = 2k + 1, in the language of the next section, Rx0=0,n has
a zero at infinity, so the corresponding Qχe is a BS where S has a zero at ∞ and none
in gap (−a, a), that is, Qχe = Be which also has a zero at infinity. By (5.4), we see
that Fχe = ege(x0=0)Be. Noting that Rx0=0,2k+1 = Rx0=0,2k , we see that

e(2k+1)ge(x0=0)(Be)
2k+1Rx0=0,2k+1 = Fχee2kge(x0=0)(Be)

2k Rx0=0,2k, (4.9)

which, by (4.8), converges to Fχe consistent with (1.11).

Example 4.6 (e a period-n set) Suppose e is a period-n set, i.e., there is a polynomial,
ϒ , of degree n exactly which is a dual residual or Chebyshev polynomial of degree
exactly n so that ‖ϒ‖e = 1 and e = ϒ−1([−1, 1]). The maxima and minima of ϒ

all lie in e and, by the analysis in the proof of Proposition 3.10 (b), they occur with
singlets at the ends and pairs in the middle. Take x0 in one of the bounded gaps, G,
of R\e. Then by taking both endpoints of G, the two singlets in the extreme points,
and one from each of the other pairs of extreme points, we obtain an x0-alternating
set with n + 2 points. It follows from Theorem 3.5 that for j ≥ 1,

Rx0,m(x) = C j
(

ϒ(x)
)

/C j
(

ϒ(x0)
)

(4.10)

form = jn orm = jn+1. As in the analysis in the last example, one has that Fjn = 1
and Fjn+1 = ege(x0)Be.

Example 4.7 (e a period-n set shrunk at one end) Start out with a period-n set, f, with
y± the top/bottom of the set and ϒ as defined in the last example. Let B = [a, y+]
be the top connected component of f and consider e = f\(c, y+], where a < c < y+.
Suppose x0 is in one of the bounded gaps of e. Take the x0-alternating set with n + 2
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points for R(f)
x0,n as in the previous example and remove y+ from it. We then get an

x0-alternating set in e with n + 1 points showing that R(e)
x0,n = ϒ(x)/ϒ(x0). One

interesting feature of this example is that depending on whether we pick c above
or below the zero of ϒ in [a, y+], we see that the extra zero not accounted for in
Theorem 3.7 (a) can either lie in [x−, x+] or not. Moreover, if a is not an endpoint of
the gap containing x0, then we can even take e = f\B showing that en = fmay contain
an extra component outside [x−, x+]. Similarly, if we shrink one of the internal bands
of f we get an example where en lies within [x−, x+] but e �= en .

Example 4.8 (Example where the limit points of Wn(e, x0) fill the entire interval
[

2, 2 exp[PW(e, x0)]
]

) (1.8) sets upper and lower bounds on Widom factors and so
on their possible limit points. In this example, we want to discuss finite gap sets
where the set of limit points is the whole interval

[

2, 2 exp[PW(e, x0)]
]

. These are
just analogs of what we discussed for Chebyshev polynomials in [7]. We’ll need the
notions of gap sets and ideas from the next section. As in [6,7], if e is a finite gap set
with m connected components so that no m − 1 of them have a linear rational relation
among their harmonic measures, then for x0 in a bounded component of R\e, and
any gap set whose gap collection doesn’t include the gap with x0, there is a sequence
Rx0,n j ; j = 1, 2, . . . whose zeros inside the gaps approach exactly the points of the
gap set. As in those papers, one can show for Kk ∈ G0, that for j large, we have that
en j ∩ Kk is a closed interval entirely within Kk that shrinks to the point xk , so

n j

∫

Kk

ge(x, x0)dρn j (x) → ge(xk, x0). (4.11)

For Kk /∈ G0, one can show that en j ∩ Kk shrinks to the edges of the gap, so since
ge(·, x0) vanishes there, the integral goes to zero. Using (3.24) and (3.10), we see that

lim
j→∞ Wn j (e, x0) = 2

∑

Kk∈G0

ge(xk, x0). (4.12)

It is then easy to see, knowing that all possible gap sets occur, that the set of limits is
the entire interval

[

2, 2 exp[PW(e, x0)]
]

.

5 Szegő–Widom asymptotics

The purpose of this section is to obtain fairly explicit almost periodic asymptotics
for Rx0,n as n → ∞. Throughout this section, we assume that e ⊂ R is a regular
Parreau–Widom set with DCT (discussed below) and let � be its complement in the
Riemann sphere, that is,

� = (C ∪ {∞})\e. (5.1)

Under these hypotheses, [6] proved explicit asymptotics for Chebyshev polynomials
(earlier [5] had proven this for finite gap sets). Not only will our proof here have a
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lot in common with the proof in [6], it will be able to use some parts of that proof
verbatim.

Let ˜� be the universal cover of � with z : ˜� �→ � the covering map. We will be
interested in analytic functions f : ˜� �→ C so that there is a single-valued function
g : � �→ C with g(z(w)) = | f (w)|. Given such a function, by the monodromy
theorem [31, Theorem 11.2.1], if π1(�, x0) is the fundamental group, there is a map
χ : π1(�, x0) �→ ∂D so that if γ is a curve in ˜� with z(γ (0)) = z(γ (1)) = x0, then
f (γ (1)) = χ([z◦γ ]) f (γ (0)), that is, χ describes the phase change under continuing
the mutivalued projection of f around a closed curve in �. It is easy to see that χ

is a character. We’ll call f a character automorphic function, or a χ -automorphic
function when we want the character to be explicit. By construction, Be normalized
by Be(x0) > 0 (or rather its single-valued lift to ˜�) is character automorphic. We use
χe for the associated character.

Given a character, χ , of π1(�, x0), we define the Widom minimizer, Fχ (z), as a
bounded χ -automorphic function with Fχ (x0) = 1 and

‖Fχ‖� = inf{‖h‖� : h ∈ H∞(�, χ), h(x0) = 1}. (5.2)

The dual Widom maximizer, Qχ , is a χ -automorphic function with ‖Qχ‖� = 1 and

Qχ (x0) = sup{h(x0) : h ∈ H∞(�, χ), ‖h‖� = 1, h(x0) > 0}. (5.3)

It is easy to see that

Qχ = Fχ/‖Fχ‖�, Fχ = Qχ/Qχ (x0), ‖Fχ‖� = 1/Qχ (x0). (5.4)

In the case x0 = ∞, these extremal functions, which we’ll call Q∞
χ , have been

studied extensively. If the PW property holds, for our finite x0 situation, the dual
Widom maximizer Q∞

χ exists and is unique; see, for example, [6]. We will use Fn as
shorthand for Fχn

e
.

Afinal elementweneed is the notion of theDirectCauchyTheorem (DCT) property.
There are many equivalent definitions of DCT – see Hasumi [20, pg. 151] or Volberg–
Yuditskii [39]. Rather than stating a formal definition, we quote a theorem that could
be used as one definition of DCT: e has the DCT property if and only if Q∞

χ (∞)

depends continuously on χ .
We note that any homogeneous subset of R (in the sense of Carleson) obeys DCT

[33]. On the other hand, Hasumi [20] has found rather simple explicit examples (with
thin components) of subsets of R which obey PW but not DCT. Volberg–Yuditskii
[39] have even found examples all of whose reflectionless measures are absolutely
continuous.

By a conformal transformation, ϒ , the set and any fixed point x0 ∈ R\e can be
mapped to f = ϒ[e] and∞ = ϒ(x0). By [20, pg. 177], f has DCT if and only if e does.
It follows that for our problem of finite x0 and Qχ , one has first that χ �→ Qχ (x0) is
continuous and then, as in [6], that for each z ∈ ˜�, Qχ (z) and Fχ (z) as well as ‖Fχ‖
are continuous in χ . Thus Fn(z) and ‖Fn‖ are almost periodic functions of n.
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With this background, we can turn to the proof of Theorem 1.1. We note it is easy
to see, as mentioned earlier, that uniform convergence on compact subsets of � with
cuts implies uniform convergence on compact subsets of ˜�.

As in [6], we begin by discussing the function defined on �n ≡ (C ∪ {∞})\en by

Ln(z) ≡ Be(z)
n	n(z) = Be(z)

n Bn(z)
dn + Be(z)

n/Bn(z)dn . (5.5)

Since |Be| < 1 on �, it suffices to consider the asymptotics of

Mn(z) ≡ Be(z)
n/Bn(z)dn , (5.6)

which by (3.13) is bounded in magnitude by 1 on �n .
To control the convergence to an almost periodic orbit, we will control limits along

enough subsequences. The complement of e inR∪{∞} is a disjoint union of bounded
open components and an infinite component which is (x+,∞) ∪ {∞} ∪ (−∞, x−).
We’ll call these components the gaps and denote the set of gaps by G. A gap collection
is a subset G0 ⊂ G. A gap set is a gap collection, G0, and for each Kk ∈ G0, a point
xk ∈ Kk . For any bounded gap K = (α, β), we define

K (ε) =
(

α + ε|β−α
2 |, β − ε|β−α

2 |
)

, ε ∈ (0, 1) (5.7)

and, for the unbounded gap, K (ε) = (x+ + ε,∞) ∪ {∞} ∪ (−∞, x− − ε).
For each gap set S, we define the associated Blaschke product

BS(z) =
∏

Kk∈G0

Be(z, xk), (5.8)

where we normalize all the Blaschke functions by Be(x0, xk) > 0. If e is DCT then,
by [6], we know that each such BS is a dual Widom maximizer Qχ . If xk ∈ Kk and
ck is the critical point of ge(·, x0) in Kk , then |Be(x0, xk)| = exp(−ge(x0, xk)) =
exp(−ge(xk, x0) ≥ exp(−ge(c j , x0)), so we have that Qχ (x0) = BS(x0) is bounded
away from zero uniformly in S,

|BS(x0)| ≥ exp[−PW(e, x0)] (5.9)

with equality occurring when the gap set S consists of all the gaps G and in each gap
Kk ∈ G the point xk is the critical point of ge( · , x0).

In the next theorem we will think of Rx0,n with dn = n − 1 as a degenerate
polynomial of degree n with a zero at infinity.

Theorem 5.1 Let n j → ∞ so that for some gap set S we have that if Kk ∈ G0, then for

large j , Rx0,n j (z) has a zero x (k)
j in Kk which converges to xk as j → ∞ and so that

for any K ∈ G\G0, and for all ε ∈ (0, 1), Rx0,n j (z) has no zero in K (ε) for all large j .
Then, as j → ∞, Mn j (z) → BS(z) uniformly on compact subsets of �\{xk}Kk∈G0 .
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Proof This result is similar to [6, Theorem 4.1]. The argument given in [6, Sect. 4]
needs only a slight modification when the gap set S contains the infinite gap K0 =
(x+,∞) ∪ {∞} ∪ (−∞, x−). To deal with the infinite gap, we need to consider two
subcases:

(1) dn j = n j − 1. In this case, Rx0,n j is a constant multiple of the Chebyshev polyno-
mial Tn j −1. Hence, by [6, Theorem 4.1],

[Be/Bn j ]n j −1 → BS′ , (5.10)

where S′ is the gap set S with the infinite gap removed, and so

Mn j = B
n j
e /B

n j −1
n j = Be[Be/Bn j ]n j −1 → BeBS′ = BS . (5.11)

(2) dn j = n j . In this case, it is possible that the band en j ∩ K0 will not shrink in
size as j → ∞. However, as we shall explain, its endpoints must still converge to
x0 = ∞. We know that x (0)

j → x0 = ∞ and, by (2.8) and (2.9),

∣

∣

∣

∣

Rx0,n(z)

‖Rx0,n‖e
∣

∣

∣

∣

1/n

→ exp[ge(z)] (5.12)

uniformly on compact sets not containing zeros of Rx0,n(z). Therefore, on each
compact subset of K0, we have |Rx0,n| > ‖Rx0,n‖e for large n. This implies that
the endpoints of en j ∩ K0 converge to x0 = ∞ and that is what we need for the
argument of [6, Sect. 4]. Alternatively, we could use the conformal transformation
z �→ f (z) = (z − x0)−1 to define the sets f = f (e) and fn = f (en). Then for each
gap f (Kk) of f, the band fn j ∩ f (Kk) shrinks to f (xk) which is the setting of [6,
Sect. 4] and hence the result follows from [6, Sect. 4]. �


Proof of Theorem 1.1 By (5.5)–(5.6), our previous remark that each BS is a dualWidom
maximizer, and the previous theorem, for all z ∈ �,

lim
n→∞ Ln(z) − Qn(z) = lim

n→∞ Mn(z) − Qn(z) = 0. (5.13)

At z = x0, this yields

lim
n→∞ Ln(x0)/Qn(x0) = 1 (5.14)

since 1/Qn(x0) is bounded above by (5.9). Recalling (5.5) and that Be(x0) =
exp(−ge(x0)) and, by (3.6), 	n(x0) = 2/‖Rx0,n‖e then shows

lim
n→∞ enge(x0)‖Rx0,n‖eQn(x0) = 2. (5.15)

This implies (1.10) since the sequence ‖Fn‖� = 1/Qn(x0) is bounded above by (5.9).
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By (5.5) and (3.6),

enge(x0)Be(z)
n Rx0,n(z) = 1

2enge(x0)‖Rx0,n‖eLn(z). (5.16)

Since, by (5.4), Qn(z) = Qn(x0)Fn(z) and enge(x0)‖Rx0,n‖e is a bounded sequence
by (1.10), it follows from (5.13) and (5.15) that

0 = lim
n→∞

1
2enge(x0)‖Rx0,n‖e [Ln(z) − Qn(z)]

= lim
n→∞

[

enge(x0)Be(z)
n Rx0,n(z) − 1

2enge(x0)‖Rx0,n‖eQn(x0)Fn(z)
]

= lim
n→∞

[

enge(x0)Be(z)
n Rx0,n(z) − Fn(z)

]

, (5.17)

which is (1.11). �

In [37] and [38], Totik studied the lim inf of Widom factors for Chebyshev polyno-

mials and when the limit exists. We want to show it is easy to prove and extend (both
to residual polynomials and in the case of Theorem 5.2 to a larger family of sets) these
results using the ideas of this section.

Theorem 5.2 Let e ⊂ R be a compact PW set with DCT and let x0 ∈ R\e. Then
lim infn→∞ Wn(e, x0) = 2. This holds also for x0 = ∞ if Wn(e,∞) is interpreted as
tn/C(e)n.

Remark 5.3 Totik [37, Theorem 3] has this result for finite gap sets in the Chebyshev
case; indeed, he has some control on the rate of convergence of inf j≤n W j (e,∞) to 2.

Proof We consider the case x0 �= ∞ (the Chebyshev case follows using the arguments
in [6,7] in place of the ideas of this section). If G is a finite or infinite dimensional
torus, it is easy to see and well known that for any g ∈ G, there is n j so that gn j goes
to the identity as j → ∞. Applied to the character group and χe, we find n j so that
χ

n j
e → 1. Thus Fn j → F1 ≡ 1, so by continuity of χ �→ ‖Fχ‖ and Remark 2 after

Theorem 1.1, Wn j (e, x0) converges to 2. Given the lower bound (3.12), we get the
result. �

Theorem 5.4 Let e ⊂ R be a compact PW set with DCT and let x0 ∈ R\e. Then
Wn(e, x0) has a limit as n → ∞ if and only if e is a single interval and, in that case,
the limit is 2.

Remark 5.5 For Chebyshev polynomials, this is a result of Totik [38, Theorem 3].
Indeed, he doesn’t need the PW and DCT conditions.

Proof By Theorem 5.2, if the limit exists, it is 2. By Theorem 1.1, if χ is any limit
point of χn

e , wemust have ‖Fχ‖ = 1. By the maximum principle, this can only happen
if χ = 1. It is easy to see that if g is an element of a torus and the only limit point
of gn is the identity, then g is the identity. Thus χe is 1. But the phase change of a
simple closed curve in C\e enclosing a component of e is the harmonic measure of
the component within and if that is always 0 or 1, we have that e has no gaps, i.e., is
an interval. �
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It is natural to ask if there is a similar universal result on the upper bound, that is, if
the lim sup always saturates (3.18). As explained in Example 4.8, if the orbit of χe is
dense, then lim sup saturates (3.18). However, for non-connected period-n sets e ⊂ R

there are values of x0 ∈ R\e such that the lim sup does not saturate (3.18). Indeed,
for such period-n sets there are only finitely many limit point gap sets and the lim sup
saturates (3.18) only when one of the limit point gap sets contains the critical points
of ge(·, x0) in each gap. As we’ll show below, the critical points of ge(·, x0) are not
constant in x0 ∈ I for any interval I ⊂ R\e and hence the lim sup does not saturate
(3.18) for x0 in a dense subset of R\e.

By contradiction, suppose c is a critical point of ge( · , x0) for all x0 ∈ I . Let
h(z) = ∂t ge(t, z)|t=c. Since ge(t, · ) = ge( · , t) has a logarithmic pole at t , it follows
that h is a non-constant harmonic function on C\(e ∪ {c}). By assumption, h ≡ 0 on
I and hence ∂x h = 0 on I . The symmetry ge(z, t) = ge(z̄, t) implies that

∂y ge(x + iy, t)|y=0 = 0 for all t, x ∈ R\e, t �= x .

Therefore, ∂t∂y ge(x + iy, t)|y=0 = 0 and so ∂yh = 0 on R\(e ∪ {c}). In conclusion,
we see that ∇h = 0 on an interval I and since h is harmonic, it follows that h must be
identically constant, a contradiction.

Acknowledgements We would like to thank M. Ismail, D. Lubinsky, and K. Schiefermayr for useful
comments.
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