
Vocal Programming for People with
Upper-Body Motor Impairments

Lucas Rosenblatt1, Patrick Carrington2, Kotaro Hara3, Jeffrey P. Bigham2
1Brown University, 2Carnegie Mellon University, 3Singapore Management University

lucas_rosenblatt@brown.edu, {pcarring, jbigham}@cs.cmu.edu, kotarohara@smu.edu.sg

ABSTRACT
Programming heavily relies on entering text using traditional
QWERTY keyboards, which poses challenges for people with
limited upper-body movement. Developing tools using a publicly
available speech recognition API could provide a basis for
keyboard free programming. In this paper, we describe our efforts
in design, development, and evaluation of a voice-based IDE to
support people with limited dexterity. We report on a formative
Wizard of Oz (WOz) based design process to gain an
understanding of how people would use and what they expect
from a speech-based programming environment. Informed by the
findings from the WOz, we developed VocalIDE, a prototype
speech-based IDE with features such as Context Color Editing that
facilitates vocal programming. Finally, we evaluate the utility of
VocalIDE with 8 participants who have upper limb motor
impairments. The study showed that VocalIDE significantly
improves the participants’ ability to make navigational edits and
select text while programming.

CCS Concepts
• Human-centered computing~Human computer interaction
(HCI) • Human-centered computing~Interaction
techniques • Human-centered computing~Accessibility systems
and tools

Keywords
Speech recognition; programming tools; upper-limb impairment;
Cerebral Palsy

1. INTRODUCTION
The most widely used method for text entry on computers is using
a physical keyboard, often with the QWERTY layout though
alternative layouts are sometimes used [7][22]. While the use of
physical/software keyboards are prevalent, they are not accessible
for people with limited upper body movements [27][33]. The
problem is exacerbated when people try to do typing intensive
tasks, such as coding software programs. The accessibility barrier
may be preventing people with motor impairments from entering
the software industry. In fact, only 4% of professional
programmers have physical disabilities [17]—a rate lower than the
8.2% of the general population who have “difficulty with physical

tasks relating to upper body functioning” [6]. This disparity
between the distributions of the general population and the
“coding” population suggests that those with upper limb
impairments are under-represented in the developer community.

Supporting people with motor impairments to type through
assistive technologies may facilitate people to enter the coding
industry and reduce the disparity in coding population. Prior work
has shown that soft keyboards or specialized trackballs can allow a
user to type, but these systems can be inefficient, difficult to learn,
and expensive [24]. More importantly, the primary target of these
tools is general computer use rather than the specialized domain of
coding—a task that involves much more structured typing,
numerous symbols, and less flexibility for errors.

There have been a few recent notable hands-free computer
programming tools. Tavis Rudd's dictation-based python
programming system as well as Ben Meyer's vocal programming
system VoiceCode1 are two examples of existing vocal
programming systems. While purported to be useful for people
with Repetitive Stress Injuries (RSI)2 or for people with motor
impairments, neither system is specifically designed to be used by
those with upper limb motor impairments, and neither has been
studied with this population. Most relevant to the current work is a
tool designed by Begel and Graham. They designed and developed
voice-based coding and noted that it has potential benefits
including a reduction in tasks that could lead to or exacerbate RSI,
improved access for people with existing motor impairments, and
the potential to further explore and understand of the process of
coding and speech recognition in specialized domains [2][3].
Voice is an input modality used by many people who cannot type
on a physical keyboard, and so lends itself to this domain [15].
However, an evaluation of voice-based coding tools with people
who have limited dexterity is missing.

In this research, we first explored the design space for vocal
programming environments and re-evaluated its utility, then
designed, developed, and evaluated our prototype vocal
programming system, VocalIDE (Figure 1). The work involved
three parts. First, we conducted a Wizard of Oz study (WOz) with
ten participants without motor impairments who each completed a
series of programming tasks. Each participant gave vocal
instructions to a researcher, who controlled a text editor based on a
predefined protocol. Second, based on results from the WOz
study, we designed and developed VocalIDE, a vocal
programming editor. Finally, we conducted a second study with
eight participants who have upper limb mobility impairments to
assess the usability of our prototype.

1 Meyer, B. Accessed May 23, 2017. Advanced voice-control Platform.
https://voicecode.io/.
2 Rudd, T. http://pyvideo.org/pycon-us-2013/using-python-to- code-by-voice.html. Using
Python to Code by Voice. PyVideo.org, Accessed May 23, 2017

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

W4A '18, April 23–25, 2018, Lyon, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5651-0/18/04�$15.00
https://doi.org/10.1145/3192714.3192821

The main contributions of this work are threefold: (i) insights into
the language inclinations of programmers who used (WOz)
speech-based coding environment, (ii) the functional prototype
system for speech-based coding written in JavaScript, and (iii)
evaluation conducted with people who have upper body motor
impairments that shows the feasibility and utility of using a system
such as ours, suggesting people can use the system to effectively
edit code.

2. RELATED WORK
In this section, we describe related work in programming,
accessibility, speech-based interfaces, and speech-based
programming interfaces.

2.1 Programming and Code Editing
Software development process involves multiple activities
incorporating both mental and physical tasks. LaToza et al. [21]
introduced a taxonomy of activities associated with development,
describing nine different activities: designing, writing,
understanding, editing, unit testing, communicating, overhead,
other code, and non-code activities. Among the nine activities, the
physical activities of writing and editing code—tasks that are
traditionally performed using text editor or integrated development
environment (IDE) with a keyboard—would put the biggest
burden on people with limited upper body movement.

Yet, writing and editing is inevitable in software development
process. In fact, Desilets [9] provides a good interpretation and
discussion of the study by Singer et al. [31] describing the
importance of code editing tasks in the development process. They
described how 8 out of the 9 programming activities described by
Singer presented similar challenges for programming-by-voice as
code editing challenges. This provides further evidence of the
importance of editing and navigation tasks in programming.
VocalIDE supports both writing and editing, although focuses
especially on code editing.

2.2 Text Input Methods for People with
Upper-Limb Motor Disabilities
Much of accessibility research on motor impairments has focused
on understanding how users with motor impairments interact with
computers through different methods, including speech
[8][14][15], touch [12][33], and gesture [38]. Of particular
prevalence is improving or augmenting pointing-based
interactions. Wobbrock et al. developed a gesture-based alphabet
input method, that could be used through multiple input styles
including a stylus [41], a trackball [37], wheelchair joysticks, and
touchpads [42]. These gesture-based techniques alter the
interaction style allowing the user to choose the appropriate input
device based on their abilities and preferences. We focus on
speech interaction because, for those who have difficulty using a
keyboard but little to no difficulty speaking, it could be a much
faster method for input compared to typing [28].

Prior research has explored speech based interaction methods
including cursor control [8][14], drawing [15] and text entry [34].
For example, Sears et al. studied how accurately people can
correct text using dictation interfaces [11][29]. Their studies
showed that correcting text in dictation interfaces can achieve
promising results [11][29]. However, the added complexity of
switching between different input approaches introduced new
interaction cost of correcting and editing, making correction and
editing of dictated text remain tedious and slow [34]. Thus, we
suspect these methods are not suited for people with motor
impairments.

2.3 Speech-Based Programming Systems
Programming, as described, is an expert task; it will always
require some user education, whether self-guided or instruction-
based, in order for interactions to produce results (e.g., sample
commands, understanding of editing mechanisms, etc.). In both
Rudd and Meyer's solutions, a new user must also learn a host of
new, non-natural vocal commands to be able to effectively use the
software. Those same systems require an unreasonable level of
precision to effectively program. This creates additional cognitive
work, especially for those who are temporarily injured or for users
where a speech impairment is present. Both systems require a
great deal of knowledge and (keyboard driven) setup. Neither was
designed with persistent disabilities in mind, and neither system
was designed empirically (involved no user study).

Research on programming by voice has produced both guidelines
and tools for vocal programming. Most existing projects focus on
the potential of vocal programming to assist experienced
programmers who may experience RSI [1][2][3][9][10]. Existing
programming-by-voice systems, VoiceGrip [9] and VoiceCode
[10], allow the user to dictate using pseudocode, rather than
having to dictate each character. However, neither example
included a formal evaluation of the system but [9] suggested that
the system was available for use and had been used by active
programmers. Begel and Graham [2] explored programming by
voice by having experienced programmers verbalize a portion of a
java program. Spoken Java and the SPEED editor were developed
to enable speech-based programming and were implemented as an
eclipse plugin and evaluated with experienced programmers [3].
The system and evaluation provide positive insight into
programming by voice and usability issues that need to be
overcome by new systems. Results suggest that, for experienced
programmers, the Spoken Java system may not desirable for
everyday use but would be a usable alternative.

Few projects have focused on vocal programming for people with
persistent motor impairments. Notably the Myna system was
developed and tested for use with children with motor
impairments [35][36].

After reviewing the current available speech-based interaction
systems, as well as Rudd and Meyers work, we realized that these
systems could benefit individuals with upper body motor
impairments, but that few to no exploratory evaluations had been
conducted. What would the best vocal programming system look
like for someone with an upper limb mobility impairment? How
can we design such a system effectively, and how can we evaluate
it empirically? We began by first observing programmers
attempting to code using natural speech, curious to see how these
observations would influence our system design.

3. STUDY 1: PRELIMINARY WIZARD OF
OZ STUDY
We conducted a Wizard of Oz study (WOz) with people without
disabilities to gain an understanding of user instincts when giving
vocal commands to a computer. The key questions included: What
commands are programmers inclined to give a computer using
their voices in order to write and edit code? What are important
friction points and the most difficult tasks to complete?

3.1 Participants
The study was conducted with 10 participants (5 female) with
coding experience but without motor impairments. Note that the
recruited population is not the target user group of the intended
final product (i.e., VocalIDE that targets people with limited

dexterity). However, working with coders without disabilities was
a good first iteration of the design process, because: (i) it allowed
us to tease out design bugs and understand frequently used
commands for vocal coding (whether one has or does not have a
disability); and (ii) the population was relatively easy to recruit,
allowing us to quickly get feedback on the initial design of the tool
(which we will evaluate with participants who have upper limb
impairments in Study 2). The participants were recruited from a
pool of summer research interns (computer science undergraduate
students) at Carnegie Mellon University via social media. The
average age of the participants was 20 years (SD=1.15). The
participants had 2.7 years (SD=0.95) of programming experience
on average. All had taken at least one programming course.

3.2 Method
The Wizard of Oz (WOz) method allows researchers to
demonstrate a working system by having a human “wizard”
simulate the functionality or intelligence by interacting with the
user through either a real or mock interface [26]. Following a
similar procedure to Begel’s exploration of experienced
programmers vocalizing Java [2], we asked participants to direct a
“human computer” (the first author) to correct code that was
provided to them. The participant's screen mirrored the display of
the “human computer's” screen, who operated the text editor
according to a literal interpretation of participant's speech. A list
of errors was provided to control for variation in debugging time
and strategy.

The participants were asked to work on six coding problems. In
each problem, the participant was presented with two blocks of
code side by side (Figure 2) where the answer was shown on the
right side of the coding window and the left displayed a similar
code snippet that contained some errors. Each problem contained
varying types of errors to diversify difficulty levels. Our goal was
to elicit as many design requirements and types of
interactions/vocal commands as possible. The majority of
problems (five out of six) that we administered were the editing
task rather than other types of tasks (e.g., writing a code snippet
from scratch—a type of a problem one would see in a coding
interview)—because (i) editing existing code is a large part of
programming process [9], [31], and (ii) it reduces the effects of
programming difficulties that is not necessarily related to
interaction challenges in entering codes with voice commands.

The six problems were created following an analysis of common
Java code and errors and had varying difficulty levels. We scraped
the 50 most in-linked algorithm pages from

rosettacode.org, combining the code to form a common
Java corpus. We ran further text analysis to create a standard of
common Java syntax (i.e., what syntax/code blocks are most
common and in what order). Jackson, Cobb, and Carver [18]
provide an approximation of the 20 most common Java errors. We
used this as a starting point to create realistic, common errors on
each level of the study. This process ensured that levels were
representative of important/common challenges a programmer
faces when writing/editing Java code. The levels began with
“easy,” smaller code edits, and progressed in difficulty by
including more text generation, selection and navigation until level
six, which was only code generation.

3.3 Result
The participants used different commands when vocal
programming, although they shared common approaches. The
most common words after excluding stop words like articles (e.g.,
“the”, “to”) were “right,” “line,” “space,” and “after.” Commonly
appearing words were navigational in nature, suggesting that a
majority of participants spent their words on referencing locations
in the code. For closer text analysis, we use lexical density (LD) (a
measure of words’ significance in a text, or how many words
contribute to the overall meaning of a text) [19]. The overall
lexical density of the participant corpus was 6.9%, which is far
less than average speech (one study suggests that speech
interviews tend to have a lexical density of ~45%) [19]. Even
though we expected a limited vocabulary due to the finite nature
of coding possibilities, our analysis of transcribed participant
speech suggested that the users were inefficient with natural
speech vocal commands. A number of individuals typed letter by
letter, while some participants provided new feature insights that
we had not yet thought of (for example: combine “search” and
“type” into one command “change”).

4. Working Prototype: VocalIDE
Drawing from prior research (e.g. [2]) and the results of our WOz
study, we developed VocalIDE, a voice-to-code editor, using
JavaScript. VocalIDE was designed and developed to
accommodate a user with an upper body motor impairment that
prevents them from quickly and/or accurately entering text on a
computer via keyboard. This user may have used accessibility
technology in the past to help with text entry, but has struggled
with writing code due to the constraints of programming (tricky
syntax, edits, odd language etc.). This user can speak clearly, and
would benefit from a system that makes text entry easy while
specifically “listening” for programming syntax as input. This
system would then make editing this input via tools easy,
increasing the speed and accuracy of a user’s interactions.
VocalIDE is a web application that allows users to write and edit
program code using a set of vocal commands. This is enabled by
two system components: browser-based automatic speech
recognition (ASR) and a rule-based syntax parser. The speech-
based coding workflow starts from turning on ASR. VocalIDE
records and recognizes users’ speech using
WebKitSpeechRecognition, which is natively available in
WebKit-based modern browsers (e.g., Google Chrome). The
interpreted speech is then passed to a rule-based syntax parser.
The parser accepts command parameter where command
represents a keyword reserved for the system (e.g., type,
select) and parameter represents an arbitrary additional
argument given by a user.
Look to Table 1 for the summary of VocalIDE’s functionality.

Figure 1. Study 1 participants were asked to correct the code
on the left until it matched the code on the right using vocal
instructions.

4.1 Commands
Writing and editing code is done via the following commands: text
entry, navigation, text selection, replacement, deletion, undo, and
snippet entry—a set of basic functionality of vocal text editing
identified in the WOz study.

• Text Entry: Users can enter new text by vocalizing the
command {type | write | add} followed by a user
specified parameter. For example, the user can say “type
open parenthesis i space less than space
one close parenthesis” to enter “(i < 1)”. The
parameter could be a word, alphanumerical letter, special
character (e.g., ‘(‘, ‘+’, ‘.’, ‘,’, ‘\’, ‘}’, ‘)’) or space/tab/return.

• Navigation: A user can reserve keywords to navigate between
lines of code with the commands {go to (line) | move
to (line) | line} and a line number. For example,
saying “move to line three” moves the cursor to the
third line of the code, as does just “line three”.
Alternatively, a user can say {up | down | left |
right} to move the cursor just like one moves around a cursor
by pressing arrow keys. A user can stack these commands – 5
“up” commands will move the cursor up 5 lines, as will “up 5
lines”

• Text Selection: Selecting instances of words or phrases can be
done by saying select and then the word or phrase. The word
or phrase that matches and is nearest to the cursor is then
selected – saying next can toggle between repeated words or
phrases. Spaces are ignored, so multiword selections are
possible. A user can also say “statement” or “block” to be
presented with options to select between specific syntax (for
example, the text within a set of parentheses). The user can also
say “line select” to select a line, or “select word” to
select the word in which the cursor currently resides.

• Replacement: The replace command is unique in a sense that it
can only occur after text selection. The replace syntax is as
follows: { change | replace } parameter { to |
with } parameter. For example, a user might say
“replace array with array open bracket
close bracket” and the system would replace the nearest
occurrence of “array” to the cursor position with “array[]”.
Specialized commands like replace were added based on
observations from the WOz study, where participants would
often use similar semantic shortcuts. Replace expects the user to
have a specific change in mind and so is prone to error (articles
like “a, the etc.” are eliminated, but other words are not).

• Deletion: The delete command allows a user to either delete a
character or delete a selected region of text. The delete syntax is
as simple as { delete | remove }. By default, delete
command deletes a character behind the current position of the
cursor. But if a text region is selected prior to deletion, the
selected text gets deleted.

• Undo: The undo command rolls back any change made to the
code in the prior step. Spoken syntax is simply: undo.

• Smart Snippet Entry: In addition to the above basic
functionality, VocalIDE implements what we call a smart
snippet entry. In the system, a set of keywords are reserved to
help a user entering a block of text. For instance, if a user issues
a command that contains the keyword “variable,” VocalIDE
creates a new variable snippet with filler text (e.g., “new
variable” creates “var x = _” where the variable could
be an array, char, boolean, string, integer, etc). Similarly, if a

user vocalizes other common code blocks such as a “make a
for loop”, “make an if statement”, “make a
while loop”, “make a new function”, the system will
auto generate the corresponding block for the user. Note,
however, this feature was only partially implemented for at the
time of testing. What it does not do well is interpret commands
such as “make a new variable foo with value 3”
– given this the system will still generate a blank filler variable
with no value, ignoring the part of the command to initialize the
variable (i.e. “with value 3”).

Text transcribed by ASR is assessed incrementally from the first
word of the text. If none of the commands or words reserved for
the programming language match the first word, the word is
ignored, and the next word is evaluated. VocalIDE prioritizes
longer commands in evaluation; the more complex commands
(multi-token, like “make an if statement with a
greater than sign”) are evaluated first, followed by less
complex commands (e.g. “go right 3 times”).

Depending on the interpreted command type, the list of numbers is
checked in order. Note that a command like “go to line 4
then right 5 times” will be carried out correctly, but that
a command like “go right 5 times on line 4” will
instead go to line 5 and right 4 times. These semantic differences
are difficult to prepare for, and need to be addressed in further
system development.

4.2 Color Context Editing
The WOz study revealed that users are inefficient when navigating
text using basic vocal commands (e.g., down, left) because it
only moves one character/one line at a time. Therefore, tasks like
selecting a word/words (to edit or delete) using multiple execution
of navigation commands is time consuming and potentially error
prone (because more command entry could introduce more
command parsing error in the ASR step). To address this problem,
we implemented Context Color Editing (CCE).

Context Color Editing is always on, following the cursor position,
and highlights individual syntax (brackets, parentheses, periods,
etc.) and words on the cursor's line (space separated collections of
characters), as well as on the lines above and below the cursor
position (Figure 4). To let a colored word(s) to be selected, the
user needs to vocalize the corresponding color (like “red”) for
that color's highlighted text (the text that happens to be highlighted
in “red” at that moment) to become the active selection. CCE is
limited, as of now, to 9 total color selections (4 before the cursor
location, 3 after, 1 above and 1 below). It is trivial to add more

Table 1. A summary of the four main components of
VocalIDE: the main speech interpreter, keyword parsing,
smart snippets, and color context edits.
Functionality Description
Main Interpreter Users can enter new text by word or by letter, enter syntax

(+, ., \, }, etc), navigate using line numbers or cursor
commands, and select instances of words or phrases.

Keyword
Parsing

VocalIDE ignores most articles and filler words, attempting
to search a command string for pertinent or significant
command information

Smart Snippets User commands that contain specific keywords are
sometimes interpreted as a “snippet” (i.e., for, if, while,
variable, array, etc). A filler element of that type is inserted.

Color Context
Edits (Figure 3)

CCE follows the cursor position, and highlights individual
syntax and words on the cursor’s line. CCE can also be
used to select large bodies of text based on syntax.

color selections, although less trivial to find more easily
differentiable colors with short names. The goal of CCE is to
allow users to be more efficient with their commands, replacing
cumbersome sentence structures with short, quickly spoken colors.

Context Color Editing was iteratively designed within the research
team. We chose to use color-based selection because the visual
feedback makes the system easy to remember. We found, through
an informal assessment, that the introduction of CCE greatly
improved close context editing ability of users (i.e., members of
research team) as they could quickly (re)select a word(s) with
color commands.

5. Study 2: VocalIDE Usability Evaluation
To assess the feasibility of using VocalIDE to edit code, we
conducted a study with people with motor impairments. We
recruited N=10 people through a local accessibility organization in
Pittsburgh, PA. Each participant was selected by a supervisor at a
local assisted living and support facility to make sure they had
upper body impairments and did not have other disabilities (e.g.,
visual impairments, cognitive impairments). As a feasibility study,
we did not specify the level of dexterity that each participant had
(but instead we measured their dexterity levels with Box and
Block Test as we describe below). In addition to these criteria, we:
(i) recruited those who use computing devices at least occasionally
to make sure they know how to interact with text editing
environment in VocalIDE, and (ii) could “speak clearly.”

Two people did not complete the entire study and were not
included in our evaluation. Of the remaining eight people, four
were female. Their ages ranged from 19 to 50 years old
(mean=30.6, SD=10.6). Three participants used computers less
than once a week, two used computers once a week or more, and
three used computers daily or more.
We note that the participants in this study were non-coders. This
was primarily due to a lack of access to experienced programmers

with motor impairments. We acknowledge that our study may
have benefited from including experienced programmers with
chronic motor impairments who fit the profile of our intended
users; however, we argue that studying with the current population
allowed us to study feasibility of using VocalIDE to generate and
edit simple code structures sufficiently. We also point out that,
with the exception of Wagner et al.’s Myna system [35][36], prior
work on vocal programming has not involved people with motor
impairments.

5.1 Method
All study sessions were conducted in a room in the local
accessibility organization’s office (Figure 5). In each session, one
member of the research team explained the study process. The
process involved 4 parts: (i) the Box and Block Test, (ii) the
baseline current computer interaction test, (iii) the system
evaluation using their voice, and (iv) an unstructured interview
asking their experience in using both traditional user interface and
VocalIDE. While our participants were working on the baseline
and VocalIDE tasks, we observed the participants and took notes
on what kinds of challenges they faced while coding.

5.1.1 Box and Block Test
To evaluate the participants’ dexterity (and exclude them in the
analysis step if necessary), we first asked them to complete the
Box and Block Test3—one of existing standard tests to measure
one’s dexterity. The test uses a hinged wooden box that opens into

3 http://www.rehabmeasures.org/Lists/RehabMeasures/DispForm.aspx?ID=917

Figure 1. Screen shot of CCE – highlighting quick selection
possibilities for the user’s convenience.

Table 2. Participant profiles for usability evaluation study.
SCI = Spinal Cord Injury, CP = Cerebral Palsy
PID Age Gender Medical Diagnosis Box/Block Test Score
P1 22 M SCI 0
P2 26 F CP 9
P3 28 M CP DNC
P4 27 M Spinal Dysmorphism DNC
P5 50 F CP 25
P6 24 F Did not Respond 30
P7 29 M Stroke 17
P8 32 M CP 20
P9 49 F CP 24
P10 19 M CP 21
.

Figure 2. Screenshot of full system – top right green box
displays recent commands, editor bottom right, file system
bottom left, and CCE key is top left.

Figure 4. Participants using VocalIDE while completing usability
evaluation. The center photo depicts a participant completing a
Box and Block Test, which is a standard measure of dexterity.

two halves, separated by a wooden divider. In either half of the
box are 150, 2.5cm, wooden cubes of varying colors. The
participant is asked to move as many cubes as they can, one at a
time, over the divider into the other half in 60 seconds. Any block
that travels across the divider in their hand counts toward their
total score. They may not throw blocks across the divider, but if
the block is carried across then bounces out of the box, it still
counts towards their total. A higher score on the test indicates
better gross manual dexterity. P3 and P4 could not complete the
test due to limited upper body dexterity, thus they did not work on
the Baseline and VocalIDE steps that we describe next.

5.1.2 Baseline Test using Keyboard or Preferred
Assistive Device
We evaluate our participants’ ability to edit code using a keyboard
or other assistive technologies, which we treat as a baseline to
assess if VocalIDE enables/improves participants’ coding
capacity. Each participant was asked whether they used any
assistive technology to interact with a computer when entering
text. If they responded yes, the researcher would assist setting up
participant’s any existing assistive technology on the test
computer. Otherwise, they used a keyboard to enter text. The
baseline condition was meant as a demonstration of using the
participants’ familiar method of text entry, whether that be with an
assistive device or the keyboard. Maintaining this order allowed us
to observe the participants’ familiar input method prior to using
VocalIDE.

We evaluate the participants’ coding capacity along dimensions of
coding processes described by LaToza et al. [21]. LaToza broke
down coding interactions into nine categories (e.g., writing,
editing, unit-testing). To assess the feasibility of coding, we
focused on writing and editing while we ignored other categories
like designing and unit testing. While the omitted activities are
important, integral parts of software development, our goal was to
see if VocalIDE can support writing code at all. We further broke
down editing and writing into smaller sub-categories: adding text
(ADD), removing text (REM), selecting text (SEL) and navigation
within the body of the text (NAV).
The test consisted of three levels of tasks including variety of tasks
that are involved in coding. Our goal in designing the levels was to
include as many types of tasks in each level, but with varying
difficulty (first level being easiest and the third level being the
hardest). Similar to the Study 1, participants were given the
correct code and the code snippet to edit in each task. Unlike the
Study 1 setting where the correct code and code snippet were
presented side-by-side, the correct code was shown on a
PowerPoint slide on another computer’s display. To give a hint of
what to edit in the code snippet, the part that the participant was
supposed to edit was highlighted on the slide. They were asked to
complete each level by making the edits so that the editor’s text
appeared exactly as the text in the PowerPoint slide looked. The
researcher recorded the breakdown of their successes, failures, and
incompletes on a spreadsheet while they completed the task. A
success was an edit that perfectly mirrored the correct version of a
level (i.e. contributed to achieving the end goal edit). If the
participant was unsuccessful after two attempts, the researcher
asked them to move on to the next level.

The first level focused on small syntax edits, such as adding single
characters, selecting and replacing single words, moving right,
left, or down. For each edit, the researcher recorded a success,
failure, and incomplete. A failure was when the user failed to use
the system to make the correct edit, while an incomplete was when

the user did not try to make the edit (we allowed this as every step
of this process was voluntary – we did not want to impart
unnecessary pressure on our participants using an unfamiliar
system). Each edit was also classified as one of the following four
categories: Navigational, Additional, Removal, or Selection.
Participants’ overall success was quantified based on their
performance in these categories via their success and failure rates.

The second level focused on harder tasks. For example, Selection
tasks required the participants to select a larger portion of the code
(e.g., line selection, multiline block selection), Additional and
Removal tasks involved more complicated edits like
copy/paste/cut, and rearrangement of code blocks. The third level
focused on code generation, asking the participant to enter
text/syntax from scratch in order to mimic a short while/if
statement snippet. A screen recording of the test was captured
throughout this step.

5.1.3 System Evaluation using VocalIDE
After completing the baseline to the best of their abilities, each
participant was guided to work on a set of tasks with similar
difficulty levels using VocalIDE. We first gave a short tutorial of
using the VocalIDE system. The tutorial consisted of a short
demonstration of the VocalIDE features described in the Section 4
of this paper. Following the tutorial, the participants completed
three levels that consisted of the same types of tasks (i.e.,
Navigational, Additional, Removal, or Selection) as the baseline
test, but with different text and occasionally in a different order.
Each task, however, required the same effort in the VocalIDE test
as the baseline. For example, for level three, the variable name to
enter might change, or the participant might have to move the text
from line 2 instead of line 4.

5.1.4 Unstructured Interview
The unstructured interview was conducted at the end of the
session to debrief the participant on their experience using both a
traditional user interface and VocalIDE. The participant was asked
to describe their experience using each interface and to discuss
any perceived benefits and/or challenges of using each one.

5.2 Result
The results of our evaluation are presented in roughly the same
format as the session described above.

5.2.1 Demographics and Box and Block Test
The results of the box and block test confirm that all of our
participants had reduced dexterity when compared to normative
data of the test [25]. The results are reported in Table 1 along with
demographic information. Of the eight participants who
participated in the Baseline and VocalIDE tasks, only three
participants used assistive devices/software. One participant used
a Bluetooth joystick to control the mouse, one participant used
WordCue autocomplete, and another participant used IntelliKeys
USB/Easyball.

5.2.2 Baseline vs. VocalIDE
To understand the effects of the task types and interface conditions
to our participants’ ability to perform the coding tasks, we used a
generalized linear model (GLM) with logit link function. Note, we
used GLM instead of the oft-used repeated measures ANOVA
because the dependent variable was binary (i.e., “completed” vs.
“incomplete”). We had TaskType (i.e., “ADD”, “NAV”, “REM”,
and “SEL”) and Condition (“baseline” vs. “test/vocal side”) as
independent variables. We also had the interaction component to
check whether the interface condition had varying effect on
different types of tasks.

We had 8 participants who were able to complete both the baseline
and the VocalIDE tests. P3 and P4 were unable to complete
enough of the study to provide comparison. Each participant
provided 40 data points for the baseline and the system test
(“ADD”, “NAV”, “REM”, and “SEL” binary completion stats and
the time it took them to do so). This gave us a data set of 640
binary completion points.

We did not observe significant main effects of task types and
interface condition, but we observed slight trend in the interface
condition (p=0.078 < 0.1). This suggests that with VocalIDE may
have positive impact in enabling/supporting people with limited
upper body movement to work on coding tasks. The lack of
statistical significance suggests more work with a larger
population size is needed in the future.

We observed significant interaction effects between task types and
interface conditions. This indicates that interface types had
varying effects on completion of the types of tasks. In observing
the success rate, the VocalIDE interface had a significant positive
impact on completing NAV (p=0.02 < 0.05) and SEL (p=0.03 <
0.05) for our participants, but our interface did not improve how
the participants could perform ADD or REM. The future work
should further investigate the effects of the interface to each type
of the tasks.

Because we could not measure the task completion time for
incomplete tasks and the types of the tasks that our participants
completed differed, we could not perform a statistical test similar
to the task success rate analysis. Therefore, we report average time
that our participants took to perform each task to get informal
sense of task completion time. Our participants completed 300
tasks (150 baseline, 150 VocalIDE). The duration to complete
each task in the baseline condition was 21.24 seconds, while the
average task completion time in the VocalIDE condition was
13.81 seconds. Though informal, these results may suggest that
VocalIDE could improve task completion time as the participants,
overall, appeared to perform tasks faster in the VocalIDE
condition than in the baseline condition where they used either
keyboard or their choice of assistive text entry devices. Note,
however, given the VocalIDE tasks were performed after the
baseline tasks, the shorter average task completion time may be
attributed to learning effect.

5.2.3 Unstructured Interview and Observation
We conducted the unstructured interview with all the participants
(N=10) regardless of their participation in the coding tasks.

Assistive Technologies for Text Editing. Nine out of the ten
participants reported that their ability to use a computer could be
improved via some sort of better assistive technology, while the
tenth participant was “not sure.” When prompted to discuss more
on current assistive interactive devices, the participants offered
mixed reviews. One participant was excited to try a vocal system
for general computer navigation. Another participant noted that
they “gets really tired after 30-60 minutes of typing” due to the
large mental effort that the interaction method requires. They were
interested in “anything that recognizes my voice, that would be
able to copy down what I say with my voice.” Another participant
was afraid that a computer voice system might have trouble
understanding them because of their stutter. Therefore, they had
not yet tried one. A participant that had tried a vocal computing
system (Dragon Dictate) said “it doesn’t really work well... it did
more to frustrate me than to help.” When pressed, the participant
responded that the frustration was due to insufficient transcription

accuracy and the consequent interactions/time required to fix the
errors.

Interest in Voice Interaction and Programming. Eight of the ten
participants said they were “interested” in a voice interaction with
their computer, and 7 of the 10 noted that they often use their
computer to enter and edit text. Four of the 10 participants said
they were interested in programming or computer coding, but
none of the participants said that they thought assistive technology
existed to help them with programing.
Overall Reaction to VocalIDE. Overall, all participants positively
reacted to using VocalIDE. For example, P2 who used a joystick
and a virtual keyboard seemed to prefer VocalIDE over the
assistive technologies in the coding tasks because it reduced the
text entry/editing effort a lot. In the interview after using
VocalIDE, they enthusiastically said “[Entering text with
VocalIDE] was much easier than the software keyboard.” P9
enjoyed speaking into the microphone and watching edits take
place. They had never used a vocal system for computer
navigation and thought it was fun. They stressed that they enjoyed
using their voice with a computer, and would do it again.
Some preferred using traditional input devices. For example, P8
preferred using a keyboard, saying that they was “used to it.”
They did not want to change their text entry method even though
they thought the VocalIDE system might be “faster [for text
entry].” This suggests that there is non-negligible learning barrier
for code editing by VocalIDE (and perhaps ASR-based text entry
in general). P6 shared that they would use the VocalIDE “if it
were better at understanding”—indicating that ASR’s
transcription was not accurate enough. This participant struggled
particularly due to their accent, and found himself frustrated by
certain unnecessary repetitions of commands. They stressed that
they “really liked the system” and would “use more often if it was
better.” P10 also struggled with the system due to their accent.

The participants’ comments reflected our motivation in facilitating
people with disabilities to enter the software industry. P5 noted
that “[He had] always wanted to program a video game where
someone’s in a wheelchair and in high school – sort of like buffy
the vampire slayer meets terminator…” and “people in
wheelchairs are not well integrated into entertainment... I’d use
any software that would help me build the video game.” They also
said “I can’t wait to get your system when its on the market, it
would be so helpful for writing stories. Now that I know I can
voice type I will keep doing it.” P6 noted that “I’ve always wanted
to make a video game with code...now I can use my voice.” These
quote suggests that VocalIDE (or perhaps any assistive
technologies that enable people to code) has potential benefits in
empowering people with disabilities to enter the software industry.

Insights from observation. While the participants were
performing the tasks, we observed how our participants worked on
the coding tasks. We were interested in advantages and
disadvantages of VocalIDE. More specifically: Can the
participants enter text in larger blocks much faster? Can they
navigate the code more efficiently compared to the baseline input
devices (e.g., a keypad, joystick)? Especially advantageous was
using the system for selection, which normally requires a click and
drag (difficult for many of the participants), but with the system
was made much easier to perform.

Response to Speech Differences - Accent and Stutter. As briefly
mentioned above, by far the most frequently observed challenge
that participants faced was misinterpreted commands due to ASR
having difficulty recognizing speech differences (ASR responds

best to clear, level toned speech, with no mumbling or affected
intonations). Errors in ASR seemed to negatively affect the
usability of VocalIDE. Most participants had at least one moment
where they mumbled or spoke too softly. As a result, ASR made a
transcription errors and the user had to repeat a command. The
imperfect automated transcription was a more severe problem for
some, because their disability not only affected their dexterity but
also their speech. For example, P1’s biggest impediment when
using VocalIDE was their stutter, which seemed to become worse
as their nerves increased. It should be noted that for P1, clarity
was not the issue - it was the built in system timeout per command
that caused VocalIDE to often misunderstand their commands.
The system would correctly transcribe their words, but before they
could say the next portion of the command (due to their stutter),
the system would execute the half-formed command (usually
resulting in either nothing or the wrong edit).

Challenges in Text Entry with Keyboard/Existing Technology.
All participants who used a keyboard had difficulty in typing
while working on the coding tasks. For example, for P1, pressing
specific keys was quite challenging. They could only focus on one
hand at a time, and had a success rate of pressing the right key, it
seemed, of less than half. They really struggled with keyboard
accuracy, and would often accidentally strike 2 or 3 keys at once.

Some features of VocalIDE seemed to help. For example, P7
described their issues with Dragon Dictate and their positive
reactions to VocalIDE’s use of CCE and Smart Snippets: “I had to
be so perfect with every word in Dragon, so deliberate…you don’t
have to be so perfect with your system. It’s better for this.” They
went on to say “I thought [color selection] was super helpful - just
to know it’s gonna complete my thought [select what I want] for
me was satisfying.” And “For me, I want to say the least amount
of things possible, the less you have to say the more[sic]. Dragon
sucked because you had to learn a different language and
everything had to be perfectly quiet.” This notion is consistent
with users’ sentiment to existing speech-based programming
systems [[23]]. They also noted that “Like you had to do
everything, but with this the shortcuts are super helpful.” The
participant went on to stress that “dragon was a nightmare” for
someone with their “other-ability”.

6. Discussion and Future Work
The results show that VocalIDE could be used for coding and
potentially improve the coding experience in some cases. Features
like CCE seemed to be helpful as described in the Result section.
Despite reactions such as this, speech recognition still seems to be
the tallest blockade to efficient speech-based editing. Currently,
our approach is dependent upon existing capabilities of speech
recognition. However, as demonstrated workarounds can be
implemented to overcome some challenges and as recognition
improves, so would the usability of systems such as this.

The analysis suggested that our participants may perform
Navigation and Selection tasks better with VocalIDE—two areas
of editing that have proven difficult with dictation software
[7][14]. Color Context Editing, in thinking about how we can
make vocal interactions with a computer more efficient, seemed
obvious post inception. Such a simple premise (color coded
selection) provided a marked increase in usability. Small
innovations such as these could improve all dictation software,
saving untold man hours by shaving seconds off the mundane.
More pertinent to this work, it can make certain tasks (selecting
that annoying punctuation, for example) accessible to those who
do not have the option to use a mouse or keyboard. Innovations

like CCE could be implemented in common dictation software,
such as Google Voice Dictate in Google Docs to name one.

Without creating an entirely new grammar for programming
syntax, we were pretty sure that we would be able to significantly
improve text generation. By having to reinterpret the English
interpretation given to us by WebKitSpeech, we were quite limited
in terms of accuracy given a range of inputs. For example, we
would hope that the interpreter would never recognize a "wild
loop" as distinct from a "while loop," but due to the constraints of
the grammar we dealt with issues like this. In the future, we would
hope to address this issue with a new grammar (i.e. a model of
spoken syntax) for programming. This is similar to the approach
by Begel and Graham [2][3] and Désilets [9].

7. Limitations
Our system design and evaluation were primarily limited to
navigation and selection. Future work should also study other
aspects of coding practices such as more accurate text generation
given a limited coding syntax (especially punctuation) and better
code snippet generation for editing than we were able to achieve.
VocalIDE is both functional and feasible, but the improvements
introduced in VocalIDE were mostly small innovations (like CCE
and smart snippet generation to allow filler text edits). It appears
there are many opportunities for innovation in this space going
forward to support greater future accessibility in coding and text
editing. More work is needed to assess and claim that VocalIDE
addresses limitations faced by those with upper body limb
impairments. But our quantitative and qualitative results are
cautiously positive, and we are optimistic that the system can be
expanded upon to address the challenges uncovered by the study.
The current system remains limited by insufficient speech
recognition accuracy and by the clumsiness of command timing,
but this is a broader challenge in ASR. Command timing may be
addressed through multi-modal input. For instance, incorporating a
binary input device for issuing commands (e.g., an easy to press
button to indicate when a user is issuing commands vs. not issuing
commands).

8. Conclusion
In this paper, we introduced VocalIDE, a system supporting vocal
programming and demonstrated that it is feasible to use the system
for programming. We contributed an empirically designed vocal
programming system (one of the first), as well as a study of its
usability and potential for individuals who have upper limb
mobility impairments. We believe that VocalIDE and systems like
ours can make programming and general computer use more
accessible to anyone, regardless of physical ability.

9. ACKNOWLEDGMENTS
We thank our participants for enabling us to perform this research.
We also thank CLASS for their support in our research.

10. REFERENCES
[1] Arnold, S. C., Mark, L., & Goldthwaite, J. (2000,

November). Programming by voice, VocalProgramming. In
Proceedings of the fourth international ACM conference on
Assistive technologies (pp. 149-155). ACM.

[2] Begel, A. and Graham, S. L., (2005) Spoken programs,In
Proceedings of the 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC'05),
2005, pp. 99-106.

[3] Begel, A., & Graham, S. L. (2006). An assessment of a
speech-based programming environment. In Visual

Languages and Human-Centric Computing, 2006. VL/HCC
2006. IEEE Symposium on (pp. 116-120). IEEE.

[4] Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer, S.R.
Example-centric programming: integrating web search into
the development environment. ACM, New York, New York,
USA, 2010.

[5] Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., and
Klemmer, S.R. Two studies of opportunistic programming:
interleaving web foraging, learning, and writing code. ACM
(2009), 1589–1598.

[6] Brault, M.W. July 2012. Americans With Disabilities: 2010.
U.S. Department of Commerce.

[7] Curatelli, F. and Martinengo, C. (2010) Enhancing digital
inclusion with an 9nglish pseudo-syllabic keyboard. HCI in
Work and Learning, (2010).

[8] Dai, L., Goldman, R., Sears, A., and Lozier, J. Speech-based
Cursor Control: A Study of Grid-based Solutions.
SIGACCESS Access. Comput, 77-78 (2003), 94–101.

[9] Désilets, A. (2001). VoiceGrip: a tool for programming-by-
voice. International Journal of Speech Technology, 4(2), 103-
116.

[10] Désilets, A., Fox, D. C., & Norton, S. (2006, April).
VoiceCode: an innovative speech interface for programming-
by-voice. In CHI’06 Extended Abstracts on Human Factors
in Computing Systems (pp. 239-242). ACM.

[11] Feng, J., & Sears, A. (2004). Using confidence scores to
improve hands-free speech based navigation in continuous
dictation systems. ACM Transactions on Computer-Human
Interaction (TOCHI), 11(4), 329-356.

[12] Findlater, L., Moffatt, K., Froehlich, J.E., Malu, M., and
Zhang, J. Comparing Touchscreen and Mouse Input
Performance by People With and Without Upper Body Motor
Impairments. ACM Press (2017), 6056–6061.

[13] Gorter, J.W., Rosenbaum, P.L., Hanna, S.E., et al. Limb
distribution, motor impairment, and functional classification
of cerebral palsy. Developmental Medicine and Child
Neurology 46, 7 (2004), 461–467.

[14] Harada, S., Landay, J.A., Malkin, J., Li, X., and Bilmes, J.A.
The Vocal Joystick:: Evaluation of Voice-based Cursor
Control Techniques. ACM (2006), 197–204.

[15] Harada, S., Wobbrock, J.O., and Landay, J.A. Voicedraw: A
Hands-free Voice-driven Drawing Application for People
with Motor Impairments. ACM (2007), 27–34.

[16] Holmes, R. and Walker, R.J. Systematizing pragmatic
software reuse. ACM Transactions on Software Engineering
and …, (2012).

[17] IGDA. October 2005. Game Developer Demographics:
Exploration of Diversity. U.S. Department of Commerce.

[18] Jackson, J., Cobb, M., and Carver, C. Identifying top Java
errors for novice programmers. Frontiers in Education,
(2005).

[19] Johansson, V. 2008. Lexical diversity and lexical density in
speech and writing. Working Papers 53. 61-79 pages.

[20] Kim, M., Bergman, L., and Lau, T. An ethnographic study of
copy and paste programming practices in OOPL. …
Engineering, (2004), 83–92.

[21] LaToza, T.D., Venolia, G., and DeLine, R. Maintaining
mental models: a study of developer work habits. (2006).

[22] Leopold, J. L., & Ambler, A. L. (1997, September).
Keyboardless visual programming using voice, handwriting,
and gesture. In Visual Languages, 1997. Proceedings. 1997
IEEE Symposium on (pp. 28-35). IEEE.

[23] MacKay, D. Dasher–an efficient keyboard alternative.
Advances in Clinical Neuroscience and Rehabilitation,
(2003).

[24] MacKenzie, I.S. and Zhang, S.X. The design and evaluation
of a high-performance soft keyboard. ACM, New York, New
York, USA, 1999.

[25] Mathiowetz, V., Volland, G., Kashman, N., & Weber, K.
(1985). Adult norms for the Box and Block Test of manual
dexterity. American Journal of Occupational Therapy, 39(6),
386-391.

[26] Maulsby, D., Greenberg, S., & Mander, R. (1993, May).
Prototyping an intelligent agent through Wizard of Oz.
In Proceedings of the INTERACT'93 and CHI'93 conference
on Human factors in computing systems (pp. 277-284).
ACM.

[27] Nicolau, H., Guerreiro, J., and Guerreiro, T. Stressing the
Boundaries of Mobile Accessibility. 2014.

[28] Ruan, S.,, Wobbrock, J.O., Liou, K., Ng, A., and Landay.
J.A. (2016) Speech Is 3x Faster than Typing for English and
Mandarin Text Entry on Mobile Devices. arXiv:1608.07323
{cs.HC} (Aug. 2016).

[29] Sears, A., Feng, J., Oseitutu, K., & Karat, C. M. (2003).
Hands-free, speech-based navigation during dictation:
difficulties, consequences, and solutions. Human-computer
interaction, 18(3), 229-257.

[30] Sears, A., Revis, D., Swatski, J., and Crittenden, R.
Investigating touchscreen typing: the effect of keyboard size
on typing speed. Behaviour & … 12, 1 (1993), 17–22.

[31] Singer, J., Lethbridge, T., Vinson, N., and Anquetil, N.
(1997). An examination of software engineering work
practices. In Proceedings of CASCON 97, Toronto, ON,
NRC, Ottawa, pp. 209–223.

[32] Suhm, B., Myers, B., and Waibel, A. Multimodal error
correction for speech user interfaces. ACM Transactions on
Computer-Human Interaction (TOCHI) 8, 1 (2001), 60–98.

[33] Trewin, S., Swart, C., and Pettick, D. Physical Accessibility
of Touchscreen Smartphones. ACM (2013), 19:1–19:8.

[34] Vertanen, K. and MacKay, D.J.C. Speech dasher: fast writing
using speech and gaze. ACM, New York, New York, USA,
2010.

[35] Wagner, A., Gray, J., (2015) An Empirical Evaluation of a
Vocal User Interface for Programming by Voice,
International Journal of Information Technologies and
Systems Approach, v.8 n.2, p.47-63.

[36] Wagner, A., Rudraraju, R., Datla, S., Banerjee, A., Sudame,
M., & Gray, J. (2012, May). Programming by voice: A
hands-free approach for motorically challenged children. In
CHI'12 Extended Abstracts on Human Factors in Computing
Systems (pp. 2087-2092). ACM.

[37] Wobbrock, J. and Myers, B. Trackball text entry for people
with motor impairments. ACM, New York, New York, USA,
2006.

[38] Wobbrock, J. O. (2014). Improving pointing in graphical user
interfaces for people with motor impairments through ability-
based design. In Assistive Technologies and Computer Access
for Motor Disabilities (pp. 206-253). IGI Global.

[39] Wobbrock, J.O. and Myers, B.A. From letters to words:
efficient stroke-based word completion for trackball text
entry. ACM, New York, New York, USA, 2006.

[40] Wobbrock, J.O., Kane, S.K., Gajos, K.Z., Harada, S., and
Froehlich, J. Ability-Based Design. ACM Transactions on
Accessible Computing 3, 3 (2011), 1–27.

[41] Wobbrock, J.O., Myers, B.A., and Kembel, J.A. EdgeWrite: a
stylus-based text entry method designed for high accuracy
and stability of motion. ACM, New York, New York, USA,
2003.

[42] Wobbrock, J.O., Myers, B.A., Aung, H.H., and LoPresti, E.F.
Text Entry from Power Wheelchairs: Edgewrite for Joysticks
and Touchpads. ACM (2004), 110–117.

