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6.1. Basic concepts of the Direct Simulation Monte Carlo method

» Definition and major concepts of the DSMC method

» Random state variables of simulated particles

» Statistical weight

» Time discretization in the DSMC method. Time-splitting technique
» Spatial discretization in the DSMC method. Sampling and indexing
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6.1. Basic concepts of the Direct Simulation Monte Carlo method

Definition and major concepts of the DSMC method

Direct simulation Monte Carlo (DSMC) method is the stochastic Monte Carlo method for
simulation of dilute gas flows on the molecular level, i.e. on the level of individual molecules. To
date, the DSMC method is the state-of-the-art numerical tool for the majority of applications in
the kinetic theory of gases and rarefied gas dynamics.

The DSMC method is based on the following main ideas:

>

>

>

>

The gas flow is represented by a set of simulated particles. Every simulated particle is
considered as a representative of real molecules in the gas flow.

Current state of every simulated particle is given by a set of state variables coinciding with
phase coordinates of a molecule in the considered problem. In accordance with the general
approach of the kinetic theory, these state variables are considered as random variables with
PDFs given by the solution of the Boltzmann kinetic equation.

The number and properties of simulated particles are not identical with the number and
properties of real gas molecules. The relationship between parameters of real and simulated
particles are established based on the analysis of similarity of gas flows described by the
Boltzmann equation.

Any dynamical process in a gas is considered as variation of state variables of individual
particles due to collisions, free motion, and interaction with boundaries. The DSMC imitates
this process in accordance with the Boltzmann equation and kinetic boundary conditions.
Macroscopic gas parameters are calculated as means of corresponding random molecular
guantities using standard Monte Carlo method for calculation of integrals.
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6.1. Basic concepts of the Direct Simulation Monte Carlo method

In summary, the DSMC method is a particle-based method, where
» Gas is represented by a set of particles;
» Individual dynamic parameters of particles are random variables;

» Concept of statistical weight is used to imitate huge number of real molecules with small
number of simulated particles;

» Variation of dynamical parameters is described by a random (stochastic) process which is
designed based (derived from) the Boltzmann kinetic equation and kinetic boundary
conditions;

» Macroscopic gas parameters are calculated as statistical means of corresponding random
molecular quantities using the Monte Carlo method.
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6.1. Basic concepts of the Direct Simulation Monte Carlo method

Random state variables of simulated particles
In 3D flows, the current state of every molecule i of a simple gas can be completely
characterized by its Cartesian coordinates x;, y;, z; and velocity components v;y, V;y, Vjy, i.€. by

6 phase coordinates:

X=0WX,X, ... Xg) = (x, Y, Z, Ux, Uy, vz).
In 2D flows (distribution function does not depend on z, f = f(x, Y, Ux, Uy, Vg, t)), the current

state of every molecule i of a simple gas can be completely characterized by its Cartesian
coordinates x;, y; and velocity components v;y, v;y, V;z, i.€. by 5 phase coordinates

X=X, Xz, Xs) = (2,9, 00, 1y, V).
In 1D flows (distribution function does not depend on y and z, f = f(x, Uy, Vy, Uy, t)), the
current state of every molecule i of a simple gas can be completely characterized by its Cartesian
coordinate x; and velocity components vy, V;y, Vjz, i.€. by 4 phase coordinates

X=Xy, Xz, e, Xg) = (%, 00, vy, 1),
In spatially homogeneous problems (f = f( Uy, Vy, Uy, t)), the current state of every molecule i
of a simple gas can be completely characterized by its velocity components v;y, v;y, Uiz, i.€. by 3
phase coordinates
X = (X1, X2, X3) = (vy, vy, 1)
In general, the set of phase coordinates of every particle can include additional variables,
charactering its internal state, e.g., rotational and vibrational energy of the particle.
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6.1. Basic concepts of the Direct Simulation Monte Carlo method

In DSMC, the current state at time t of a gas composed of N simulated particles, is characterized
by the vector of state variables

Y = (XllX21X3i ...,Xi, ""XN)'
All these variables are considered as random variables.

Any dynamical process (flow) in a gas is considered as variation in time of random phase
coordinates of individual simulated molecules (random process),:

[N, Y] = [N(©), Y(£)].

Initial values of the state variables at time t = 0 are chosen by sampling individual phase
coordinates in accordance with the initial conditions for the Boltzmann equation in the
considered problem.

In a computational code, it is convenient to introduce a specific structure PCL containing state
variables (phase coordinates) of an individual simulated particle, e.g.

#define DIM 2 // Spatial dimension of the problem
#define MAX_PCL 1000000 // Maximum number of particles iIn the domain

typedef struct pcl {
double X[DIM];
double V[3];
¥} PCL:

// Global variables defining the current state of the simulation process

int NP ; // Current number of simulated particles in the domain = N
Rl P[MAX_PCL]; // Array of simulated particles = Y
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6.1. Basic concepts of the Direct Simulation Monte Carlo method

Statistical weight
The concept of a statistical weight is the most important concept of the DSMC method. It allows
one to perform simulations of gas flows using the number of simulated particles which is much
smaller than the number of molecules in real gas flows.
The purpose of the DSMC is to simulate (imitate) a gas flow in accordance with the Boltzmann
kinetic equation. Correspondingly, the concept of the statistical weight is based on the analysis
of similarity of gas flows described by the Boltzmann equation.
Two flows (physical phenomena) are called similar if numerical properties of such flows are
identical in reduced units. In application to the rarefied gas flows, it means that two similar flow
correspond to the same solution of the Boltzmann equation in reduced units.
The Boltzmann equation in reduced units

. r - t I ' ~ C, B o . F _ f
r:—, = —, V:—’ C =, o = ) = —, =
L, t, v, T, mdg, s F. / n,/v3
can be written as follows (see Eq. (3.9.9))
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6.1. Basic concepts of the Direct Simulation Monte Carlo method

In other words, two solutions are similar if they correspond to the same Sh, Fr, and Kn. These
non-dimensional numbers (parameters) are called the criteria of similarity.

Note: Sh, Fr, and Kn do not compose the full list of criteria of similarity of a gas flow. Other
criteria of similarity, e.g. T,- /T, are introduced by the kinetic boundary conditions.

As on can see, there is only one criterion of similarity, the Knudsen number, that is defined by
the number density of molecules and molecule cross section. Thus, one can simulate a real gas
flow with characteristic number density n, composed of molecules with characteristic cross

section 0. =ﬂd}%ef by a flow with another characteristic number density M (r) and

composed of simulated molecules of another size Ts(s)- The real and simulated flows are similar,

if the Knudsen number is the same in both flows:
1 1

6.1.1 Kn = = :
- FOUOLTICAOUNOLE
In the DSMC method, the ratio

n,
(6.1.2) W = —0

M (s)

is called the statistical weight of a simulated particle. Practically, one can say that every
simulated particle represents W particles in the real gas flow. Then according to Eq. (6.1.1.), for
similarity of the flow of simulated particles to the real gas flow, in all calculations of collisions
between simulated particles, the cross-section of simulated particles must be equal to

(6.1.3) Ox(s) = WO'*(T).
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6.1. Basic concepts of the Direct Simulation Monte Carlo method

» Number of collisions between molecules is defined by the collision frequency z = noC.
» For the same velocities of gas molecules, the number of collisions depends on n and o.
» Consider two flows

If n*(r) G*(r) = n*(S) G*(S) ’

then the collision frequencies
are the same in both flows.

If other conditions in both flows
are the same, then two flows are
equivalent to each other.

A\

We can simulate a huge number of small particles with small number of huge particles!

» In DSMC simulations the number of simulated molecules may be not equal to the
number of molecules in real flow. This makes DSMC different from MD, where every
simulated particle represents one molecule of the real system.

» By enforcing Eq. (6.1.1) is the flow of simulated particles we guarantee the same
collision frequency and the same degree of rarefaction in both real and simulated gas
flows.

» The statistical weight is an important numerical parameter of the DSMC method. Value
of W affects the accuracy of simulations.
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6.1. Basic concepts of the Direct Simulation Monte Carlo method

The concept of the statistical weight is extremely important for the DMSC method. It makes
possible to consider problems in both micro- and planetary scales.

By proper choice of the statistical weight, we can described both problems with the same
number of simulated particles.

Atmosphere of lo

L._" Soot nanocluster
. ]

o

-

3640 km
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6.1. Basic concepts of the Direct Simulation Monte Carlo method

Time discretization in the DSMC method. Time-splitting technique

We will consider an implementation of the DSMC method for two-dimensional steady-state

problems, i.e. problems when the distribution function of gas molecules and macroscopic gas

parameters are assumed to be functions of two spatial coordinates and do not depend on time.

The DSMC method is an inherently unsteady method, since state variables of individual

molecules always vary with time in the course of their chaotic motion.

In order to describe variation of particle parameters in time, the DSMC employs an approach

similar to the approach for numerical solution of ordinary differential equations: The time of the

process is discretized into short intervals of duration At, which is called the time step. The

parameters of simulated molecules are defined only after end of every time step, i.e. for times
th=t"14+A, t°=0, n=12..

Here n is the number (index) of the time step. At time t™, the state of the simulated system of

particles is defined by parameters

[N®,Y"] = [N(@™), Y(t™)].

It is assumed that [N, Y"**1] depends only on [N™, Y"] and the whole simulation process
then looks like an iterative update of vector [N™, Y] from step to step:

[NO,YO] ; [Nl,Yl] > > [Nn_l,Yn_l] ; [Nn’ Yn] ; [Nn+1’Yn+1] ;

Initial state One time step of the DSMC method
(initial condition)
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6.1. Basic concepts of the Direct Simulation Monte Carlo method

In computational codes, such iterative update of [N™, Y"] is convenient to organize in a form of
a loop called the time loop of the DSMC method.

During a time step, the DSMC method employs the time-splitting technique, when variation of
dynamic variables from [N"‘l,Y"‘l] to [N, Y"] due to different physical processes is
considered sequentially. Then one time step of the DSMC algorithm includes three major
substeps:

Motion substep: Collision-free motion of simulated particles under the effect of external
forces (if any) during At.

Boundary substep: Interaction of simulated particles with interphase boundaries and
generation of new simulated particles (e.g., evaporation), i.e.
implementation of boundary conditions.

Collision substep: Binary collisions between simulated particles.

Then the sequence of calculations during a time step is as follows:
IN*L Y —— [N, Y ]—— [N, Y] ——[N", Y"]

Free motion Boundary Collisions
conditions

Time step At is important numerical parameter of the DSMC method. Value of At affects the
accuracy of simulations.
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6.1. Basic concepts of the Direct Simulation Monte Carlo method

Spatial discretization in the DSMC method. Sampling and indexing
In DSMC simulations, the whole flow domain is discretized into a mesh (grid) of cells. This spatial

discretization into cells is used for two purposes:

» Collision sampling: At every time step, binary collisions between cells are sampled (drawn)
only for particles within a cell. No collisions between particles in different cells are accounted

for.

» Macroscopic gas parameters sampling: Gas macroparameters in the cell center are defined
as means of molecular quantities of simulated particles averaged over the cell volume .

For both purposes, at every time step of the DSMC
method, it is necessary to define lists of particles
belonging to every cell of the computational mesh.
Usually a cell of the computational mesh is identified
by one or few integer indices. The process of
calculations of the cell index for every simulated
particle is called the particle indexing.

The actual implementation of indexing depends on
the approach used in order to define individual cells of
the computational mesh. The DSMC method is very
flexible and can be used with structured and
unstructured meshes, including simple Cartesian
meshes with cut cells.

Cartesian mesh with cut cells

y
d
Ay
C \\
X
a \b
Ax Cut Cell

ME 591, Non-equilibrium gas dynamics, Alexey Volkov

13



6.1. Basic concepts of the Direct Simulation Monte Carlo method

Sampling of binary collisions and macroscopic gas parameters will be considered later on in
Sections 6.3 and 6.6. Here we make only a few notes:

» Sampling of collisions is required at every time step during the whole simulation process.

» Sampling of macroscopic gas parameters usually does not affect current state of the
simulated molecules [N",Y"]. Steady-state problems are usually solved by the DSMC
method using the time convergence approach, when the steady state is approached
gradually in the course of simulation started from arbitrary initial condition. In steady-state
problems, sampling of macroscopic gas parameters is usually required only when the steady-
state is achieved. The whole simulation process in this case consists of two stages:

» Transient stage: Simulation of a transient process from arbitrary initial distribution of
simulated particles to the steady-state during some time t.;. Sampling of macroscopic
gas parameters is not performed during this stage.

» Steady-state stage: Simulations of the steady-state process at t > t.. in order to sample
enough simulated molecules in every cell and calculate macroscopic gas parameters.
The duration of this stage, tp — tg, (here tp is the total process time) must be chosen
sufficiently large in order to ensure calculation macroscopic gas parameters in every cell
of the computational mesh with small dispersion

The sizes of cells of the computational mesh are important numerical parameters of the DSMC
method. Values of cell sizes affect the accuracy of simulations.
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6.2. Skeleton of a DSMC-base code simulations of two-dimensional flows

» Flowchart of the DSMC algorithm
» Implementation of the DMSC time loop in a C++ code
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6.2. Skeleton of a DSMC-base code simulations of two-dimensional flows

Flowchart of the DSMC algorithm
Based on the concepts considered in Section 6.1, the following flowchart of an "idealized" DSMC
algorithm is used for the code development:

Set random seed _ .
Processing of input parameters and

Setup calculation of additional constants

Initial conditions. n = 0. t = 0 (cell size, statistical weight, etc.)

Free motion  tgg is the estimated time
Boundary conditions O required to reach.the
_ o steady state for given
e Indexing 5 initial conditions
o Collisions &
) o . )
tp is the full time of the
£ n=n+1t=t+At S P>
= physical process to be
No Yes :
t > tog sampling ~ considered
No Yes Printing of
t > tp 5 Exit

final results
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6.2. Skeleton of a DSMC-base code simulations of two-dimensional flows

Implementation of the DMSC time loop in a C++ code (see DSMC2D_Template02.cpp)

double
int
int
int
int
int
double

Dt; //
NStep; //
FirstSamplingStep; //
SamplingPeriod; //
PrintPeriod; //
Step; //
Time; //

Time step (s)

Total number of time steps

Number of the first sampling step
Period between sampling steps
Period between printing of results
Current step number

Current time (s)

int main ( int argc, char **argv ) ///////////7/////7//77///////1///////////////////////

{

time_t

// Set the iInitial seed for pseudo-random number generators

t-

SetSeed ( unsigned ( time ( &t ) ), unsigned ( 362436069 ) );
// Setup of the computational algorithm: Calculation of all constants

Setup );

// Set initial distribution of particles in the domain

InitialConditions ();

// DSMC time loop

do {
MoveParticles ();
BoundaryConditions
Indexing ;

O:;

CollideParticles ();
if ( Step > FirstSamplingStep && Step % SamplingPeriod == 0 ) Sampling ();

Step++;
Time += Dt;

if ( Step > FirstSamplingStep && Step % PrintPeriod == 0 ) Printing ;

} while ( Step < NStep );

// Printing the final results

Printing Q;

Y /1177777777777 77777777777777771777777//7777777//7/7/777/////7/7////////7/////7//7//7/7/7
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6.3. Particle motion, indexing, and sampling of macroscopic gas parameters

» Particle motion in the DSMC method

» Implementation of particle motion given in a C++ code

» Indexing of particles in the DSMC method

» Implementation of particle indexing given in a C++ code

» Sampling of macroscopic gas parameters in the DSMC method

» Implementation of sampling of macroscopic gas parameters in a C++ code
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6.3. Particle motion, indexing, and sampling of macroscopic gas parameters

Particle motion in the DSMC method
Free (collisionless) motion of molecules is implemented in the DSMC method in accordance with
the Boltzmann kinetic equation. In this equation, the variation of the distribution function due
to motion of molecules is described by the convective term in the left-hand side of this equation
(see Section 3.3). This convective term is defined assuming that variation of phase coordinates
of every particle i between collisions is determined by the equations of motion

(6.3.1) dr; _ m@ _F
dt "

where F; is the external force exerted on particle i.

During the motion substep (see slide 11),

[Nn_l,Yn_l] ; [Nn_l,Y*]

Egs. (6.2.1) are solved numerically for a time step At, usually with the Runge-Kutta methods,
e.g., of the second order.

The force F; can be a gravity force, which is usually important only for planetary
science/astrophysical applications, or electromagnetic force exerted on charged particles in
plasma. Thus, in the majority of applications of the DSMC for neutral gas flows, F; = 0 and then
the accurate solution of Egs. (6.2.1) during a time step can be written in the form

(6.3.2) r; =1+ Acvi v = vl
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6.3. Particle motion, indexing, and sampling of macroscopic gas parameters

Implementation of particle motion given in a C++ code
(see DSMC2D_Template03.cpp)

#define DIM 2 // Spatial dimension of the problem
#define MAX_PCL 1000000 // Maximum number of particles in the domain

// This structure contains dynamic state variables for an individual simulated particle

typedef struct pcl {

double X[DIM]; // Cartesian coordinates
double V[3]; // Components of the velocity vector
; BOLC
double Dt; // Time step (s)
int NP ; // Current number of particles iIn the domain
el P[MAX_PCL]; // Array of simulated particles

void MoveParticles () ////////7/777777777777/777/77/7777/7/7/7/77///77/77/7//7/7///7//7///7/77/7/7777
{
for ( int 1 = 0 1 = NP: 1t+) )
for ( int m = 0; m < DIM; m++ ) P[i]-X[m] += Dt * P[i].-V[m];

ME 591, Non-equilibrium gas dynamics, Alexey Volkov
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6.3. Particle motion, indexing, and sampling of macroscopic gas parameters

Indexing of particles in the DSMC method
The approach for particle indexing in DSMC depends on the type of computational mesh/grid.

For structured and unstructured grids, the approaches are different. We consider only the
simplest case of structured Cartesian mesh for 2D flows.

Let's assume that the flow domain is a rectangle of size [a,b] X [c,d ] and we introduce in
this rectangle a mesh of cells of constant sizes Ax and Ay by lines

y x=x,=a+Axk (k=0,,...), y=y;=c+Ayl (I=0,1,..)
d Indexing implies that we define indices of a cell
Ay (k;, l;), where particle every particle is located.
These indices can be calculated based on current
— Cell with indices (0,0) — coordinates of particle i as follows
/
/ i—a i
v ki—[ o ] li—[ iy ] (6.3.3)
c
a b x where [z] means the integer part of z.

Ax

In the DSMC method, in every cell of the computational mesh, a special data structure (particle
list) is introduced in order to contain information about indices of all particles, which belong to
the this cell. These particle lists are updated at every time step.
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6.3. Particle motion, indexing, and sampling of macroscopic gas parameters

Implementation of particle indexing given in a C++ code
(see DSMC2D_Template04.cpp)

#define MAX_PCL_IN_CELL 1000 // Maximum number of particles In a cell
#define MAX_CELL_X 200 // Maximum number of cells along X axis
#define MAX_CELL_Y 200 // Maximum number of cells along Y axis

double X1, X2, Y1, Y2; // Domain size (m)

int NX, NY; // Number of cells along X and Y axes

double DX, DY; // Cell sizes (m)

// Lists of particles in cells of the computational mesh

int NPC[MAX_CELL_X][MAX_CELL_Y]; // Numbers of particles in cells
int IPCI[MAX_CELL_X][MAX_CELL_Y]IMAX PCL_IN _CELL]}; // Indices of particles in cells

void Setup ) ////7777777777777777777777777777/77/7/77/7/77///7///////////////////////////////

{
DX

DY

(2 7
( O 7

I

void Indexing ) Z////77777/77771777777 17111777/ /177117717 /1/77////////////////7//7/////////7
{
memset ( NPC, O, sizeof NPC ); // Set initial number of particles iIn every cell to zero
for Cint 1 = 0; 1 < NP; i++ ) {// Distribute particles between cells
// Calculate indices of the cell
int k = int ( ( P[i]-X[0] - X1 ) /7 DX );
int 1 = int ( ( P[i]-X[1] - Y1 ) / DY );
IPCIK][1]1INPCIK][1]++] = 1; // Add particle to the list of particles In the cell

+
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6.3. Particle motion, indexing, and sampling of macroscopic gas parameters

Sampling of macroscopic gas parameters in the DSMC method

In the kinetic theory, all macroscopic gas parameters can be calculated in the form of averaged
molecular quantities, i.e. integrals of the distribution function f(r, v, t), Eq. (3.3.2):

1
(6.3.4) (D) (r,t) = o j d(r,v,t)f(r,v, t)dv.
The most important macroscopic parameters are (see Sections 3.3 and 3.10):
(6.3.5) Number density: n = ff(r, v, t)dv ,

. 1f

(6.3.6) Gas velocity: u = oy vf(r,v,t)dv,

_ (m(v—u)?
(6.3.7) Internal energy density: E = J > f(r,v,t)dv,
(6.3.8) Stress tensor: S = —m j(v —w)(v—u) f(r,v,t)dv,

m(v —u)?

(6.3.9) Heat flux vector: q = f(v —u) > f(r,v,t)dv.
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6.3. Particle motion, indexing, and sampling of macroscopic gas parameters

One can introduce the temperature T using the kinetic definition of temperature, e.g., Eq.
(3.2.10):

kT 1E
(6.3.10) BT _2Z
2 3n
and pressure as the negative average of diagonal components of the stress tensor:
1
(6.3.11) p=—3 (Sxx + Syy + Szz) = nkpT.

In the DSMC method, any macroscopic gas parameter in the form of Eq. (6.3.4) is calculated
through random state variables (coordinates and velocities) of simulated particles using the
Monte Carlo method for evaluation of integrals, i.e. in the form of an arithmetic mean given by
Eqg. (5.4.1). In order to use such an approach, Eq. (6.3.4) must be represented in the form of an
expectation of some random variable.

Let’s consider a steady-state homogeneous state of a gas with distribution function f(v). If
components of the velocity vector V = (Vx, Wy, VZ) of some simulated particle are random

variables, then what is the relationship between distribution function f(v) and PDF fy(v)? The
PDF must satisfy two conditions:

1. fy(v) = 0: This condition is automatically satisfied for f(v).
2. Normalization condition, e.g., Eq. (4.6.3)
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6.3. Particle motion, indexing, and sampling of macroscopic gas parameters

Let’s compare Egs. (6.3.5) and (6.3.12). One can see that conditions given by Eq. (6.3.12) is
satisfied if the PDF of random molecular velocities is equal to (see slides 33 and 34 in Chapter 5):

\%
Then Eqg. (6.3.4) for spatially homogeneous steady state can be represented in the form
1
(63.14) @) = [ emfWav = [ @AMV = E@®),

Eqg. (6.3.14) has simple physical meaning: Macroscopic quantity (®), which we introduced as an
average value of molecular quantities ®(v) of individual molecules, from the point of view of
statistics is simply the expectation (mean) of random variables of ® for individual molecules.

If random velocity vectors v; are statistically independent, then ®(v;) are also independent, and
we can use the central limit theorem in order to calculate (®) in the form of arithmetic mean

given by Eq. (5.4.1), i.e.
D(vy) + P(vy) + -+ D(v
631 (@ = 20+ 20 ()
where N is the number of simulated particles in our system.

Eqg. (6.3.15) allows us to calculate all macroscopic parameters given by Egs. (6.3.5)-(6.3.11) if we
additionally define the gas number density n. If our system of N simulated particles with

statistical weights W is located in a “cell” of volume V, then

. _WN
(6.3.16) n= v
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6.3. Particle motion, indexing, and sampling of macroscopic gas parameters

Egs. (6.3.15) and (6.3.16) are sufficient for calculation of all macroscopic parameters. Practical

implementation of such calculations is based on the following approach:

1. The whole flow domain is divided into a mesh of cells and macroscopic gas parameters in
the cell centers are calculated as averaged parameters over the volume of every cell.

2. It means that Egs. (6.3.15) and (6.3.16) must be applied individually to a subsystem of
particles inside every cell.

3. Calculations with Eq. (6.3.15) and (6.3.16) can be accurate only if N is very large. In order to
increase the number of sampled particles, in steady-state flows, particles parameters are
accumulated during many time steps.

4. In order to ensure that velocity vectors of individual simulated particles are independent
random vectors, particle parameters are accumulated not every time step, but with period
At, = AK,At. Parameter AK, is given by variable SamplingPeriod in the DSMC code
shown in slide 15. In many practical problem sampling can be performed with AK, = 1.

5. In order to accumulate random molecular quantities during multiple time steps, special
variables-counters are introduces for every cell of the computational mesh.

Let’s assume that we have a regular (structural) mesh of cells, where every cell is identified with
index (k, 1), N™ is the number of simulated particles in the cell (k, ) of volume V at time t", v
are velocity vectors of these particles.

Let’s consider a problem when we need to calculate n, u, and E. For this purpose we will
introduce in the cell (k, l) three variables-counters n3, uy, and Ey and a counter of times steps
K used for sampling of macroscopic gas parameters.




6.3. Particle motion, indexing, and sampling of macroscopic gas parameters

The calculations can be organized as follows:
1. At the beginning of simulations we set all counters to zero:

K=0, n2=0, uy=0, Eg=0.

2. Once the steady state is reached (t > tgs), we update values of counters at the time step
after every AK, steps as follows:

K=K+1, ng =ng "+ Ng,
Ni 1 Ni1

uf =uf '+ zvl" E} =Ef '+ z(vf)z.
i=1 i=1

3. At the end of simulation (t > tp), when we need to print the macroscopic parameters in the
cell (k,1), they can be calculated as follows

W nZ ug _WmEg/2 m(ug)’

Sy WS W=y T T
pX

Note that equation for Ej ; is based on Eq. (3.2.8): The first term is the right-hand side is the
density of the total energy and the second term is the density of kinetic energy associated with
macroscopic motion of the gas. The difference between then is the density of internal energy.
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6.3. Particle motion, indexing, and sampling of macroscopic gas parameters

Implementation of sampling of macroscopic gas parameters in a C++ code
(see full version in DSMC2D_Template05.cpp)

typedef struct cell { 7////777777/77777777777777/777777/7/7/77////7//7///////1///////////////////7/77

double CountNP; // Particle number -> Number density
double CountV[3]; // Velocity vector V -> Macroscopic gas velocity
double CountV2; // Velocity square -> Density of internal energy
3 CELL
int SampleStep; // Number of sampled steps
CELL C[MAX CELL_ X][MAX CELL Y]; // Sample counters in cells

#define sqr3( V ) ( V[0O] * V[O] + V[1] * V[1] + V[2] * VI[2] )
void Sampling O { Z/////77/7///77777777777/7777771/7/7///7////7///////////////////////////////////
SampleStep++;
for ( Int kK = 0; k < NX; Kkttt )
for C int 1 = 0; 1 < NY; 1++ ) {
CIK]1[1]-CountNP += NPCIKk][1]:;
for (int i = 0; 1 < NPCI[K][!1]; i++ ) {
C[k][1]-CountVv2 += sqr3 ( PLIPCIK]IM]Li1]l-V );
for C intm=0; m< 3; mt+ ) C[K][1]-CountV[m] += PLIPC[K]LI]1[i]1]-VIm];

}
3
void Printing O { /////77777/77/711/7777777777/7/71//71/7177//7//7///////1//////////////////////////
for C int K = 0; k < NY; k++t )
for (. int 1 =0; 1 < NX; 1++ ) {

double X = X1 + ( k + 0.5 ) * DX;
double Y = Y1 + ( 1 + 0.5 ) * Dy:
double N = Weight * C[K][1]-CountNP / SampleStep / DV; // DV is the cell size

double U[3];
for C int m =0; m< 3; mt+ ) U[m] = CIK][1]-CountV[m] 7/ C[k][1]-CountNP;
double E = Weight * ParticleMass * C[i][j]-Countv2 / 2.0 / SampleStep / DV
- N * ParticleMass * sqr3 (U ) 7/ 2.0;
fpripty ( B, 7. X Y. N, UTO). Ull]. F )
+
b5
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6.4. 2D test problem: Flow past a thin wing at an attack angle

» Two-dimensional test problem
» Simulation parameters in 2D flow past a thin wing in a C++ code
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6.4. 2D test problem: Flow past a thin wing at an attack angle

Implementation of initial and boundary conditions in the DSMC simulation is problem-specific.
We consider implementation of typical initial and boundary conditions in the rarefied gas
aerodynamics.

Two-dimensional test problem
Let’s consider a flow past an infinitely thin wing at the angle of attack a.

Equilibrium
free stream

Noor Uoor Lo

Molecular model: VHS molecules of mass m with the total cross-section

C w

R

or(Cr) = d? (C,) = 0T,Ref< TC ef) -
T

Wing : Plane wing of length L at constant temperature T,, and angle of attack «; Diffuse
scattering of gas molecules from the wing surface.
Free stream : Equilibrium Maxwell-Boltzmann flow at given ny,, Ue, T .
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6.4. 2D test problem: Flow past a thin wing at an attack angle

We will solve this test problem in rotated frame of reference in order to use the simplest

rectangular computational mesh.

(xw ,Yw) specifies position of the

Y, wing leading edge with respect to
the domain boundaries

N

v
=

uxoo
Uoo Equilibrium
Ma, = q
YRTo free stream
Ma s, Poor Teo
Ny = P
o =
kBToo X1
A
Uyoo = Ueo COS A Ax |
Uyo = —Ue SIN A Ax

L
Yw
\\fa
Xw

-
.

V1

Statistical weight is usually calculated based on desired number of simulated particles N,y in a

cell, which is placed in the free stream:

Ax?Azng,

Neo

Here Az is the size of the computational domain along Oz axis. In the developed C++ code, N,
and Az are stored in variables NPCFree and DZ.
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6.4. 2D test problem: Flow past a thin wing at an attack angle

double
int
int
int
int
double
double
double
double
double

int
int

double
double

double

double
double
double

double
double
double
double
double

Simulation parameters in 2D flow past a thin wing in a C++ code (l)
(see full version in DSMC2D_Template06.cpp)

Dt

NStep
FirstSamplingStep
SamplingPeriod

PrintPeriod

X1 0
X2 = I &
Y1 = i
Y2 = 1.0
Dz = 0
NX = 100;
NY = 100;
NPCFree = 10;
DL =0 1=

MaFree = 4.0;

PFree = 0.1;
TFree = 200.0;
WingX = -0.25;
WingY = 0.0;

WingLength = 0.5;
AttackAngle = 30.0;
Tw = 300.0;

//
//
//
//
//

//
//

//
//

//

//
//
//

//
//
//
//
//

1.0e-06; // Time step (s)
100000; // Total number of time steps
10000; // Number of the Ffirst sampling step
1; // Period between sampling steps
10000; // Period between printing of results
(m)
(m)
(m)
(m)
Domain (cell) size 1n z direction for 2D problem (m)

Number of cells along X axis
Number of cells along Y axis

Average number of particles in a cell of the free stream
Size of the auxiliary domains mmplementing the free stream (m)

Molar mass of gas (kgZmole)

Free stream Mach number
Free stream pressure (Pa)
Free stream temperature (K)

X coordinate of the wing leading edge (m)
Y coordinate of the wing leading edge (m)
Length of the wing (m)

Angle of attack (degree)

Temperature of the wing surface (K)

ME 591, Non-equilibrium gas dynamics, Alexey Volkov 32



6.4. 2D test problem: Flow past a thin wing at an attack angle

double
double
double
double

double
double
double

Simulation parameters in 2D flow past a thin wing in a C++ code (ll)
(see full version in DSMC2D_Template06.cpp)

DX, DY; // Cell sizes (m)

DV; // Cell volume (m"3)

Weight; // Statistical weight of simulated particles
MoleculeMass; // Mass of a molecule (kg)

NFree; // Number density iIn the free stream (1/m”3)
UFree; // Velocity iIn the free stream (m/s)

UxFree, UyFree; // X and Y components of the gas velocity vector in the free stream

void Setup Q) /7717777777777 777777777777177771 777777777717 77771/777177777/77/777/777/7/777/7/7/7777

{

MoleculeMass = MolarMass / AVOGADRO_CONSTANT;
NFree = PFree / ( BOLTZMANN_CONSTANT * TFree );
UFree = MaFree * sqrt ( ( 5.0 /7 3.0 ) * BOLTZMANN_CONSTANT * TFree / MoleculeMass );

UxFree = UFree * cos ( M_PI * AttackAngle / 180.0 );
UyFree = - UFree * sin ( M_PI * AttackAngle /7 180.0 );
D= %2 — XL 3./

DY = ( Y2 - Y1 ) / NY;

by e By B

Weight = DV * NFree / NPCFree;
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6.5. Initial and boundary conditions for the 2D test problem

» Generation of molecules with equilibrium distribution in a rectangular domain

» Implementation of generation of particles in a rectangular domain in a C++ code

» Initial conditions

» Implementation of initial conditions in 2D flow past a thin wing in a C++ code

» Free stream boundary conditions at the external boundary

» Implementation of free stream boundary conditions in the C++ code

» Boundary condition of diffuse scattering of gas molecules from the wing surface

» Implementation of boundary conditions of diffuse scattering on the wing surface in
a C++ code

» Example: Simulation of free molecular (collisionless) flow
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6.5. Initial and boundary conditions for the 2D test problem

Initial conditions and boundary conditions in the free stream in the test problem reduce to
generation of simulated particles with Maxwell-Boltzmann distribution in a rectangular domain.

Generation of molecules with equilibrium distribution in a rectangular domain
2 Y
Y2 n m(v —u)?

fEE EEEEEEREEE f(v) = (2rkgT /m)3/2 exp [_ 2kgT

Average number of simulated molecules to be

¥ generated:

................ (xz _ xl)(yz _ yl)Azn .

________________________________ W
V1

> If (N)islarge ((N) > ~20), then the random number of particles N can be chosen as

N = {[<N>]+1, y <(N)—[(N)]
[(N)], otherwise

> If (N)is small ((N) < ~20), then the random number of particles N can be chosen based on
the Poisson distribution with parameter a = (N) (see Sections 4.5 and 5.3).

» Random coordinates of particles are distributed uniformly.

» Components of the random velocity vector have Gaussian distribution with means
(Uy, Uy, U, ) and variance kgT /m (see slides 33 and 34 in Chapter 5).

EEEsEuzsEuusEs (N) =
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6.5. Initial and boundary conditions for the 2D test problem

Then generation of coordinates and velocities of a single particle can be perform using the

following fragment of C++ code:

PCL P
vZrand uniform rect ( P.X[O], P.X[1]. X1, X2, Y1, Y2 ); // Generatle position
vrand_MB ( P.V, MoleculeMass, Ugas, Tgas ); // Generate velocity

where

void vrand_MB ( double *v, double m, double *u, double T ) ////////////////////////////////7
// This function generates random velocity vector from Maxwell-Boltzmann distribution.

// 1t was adopted from solution of problem 6 in homework 4.

{ 777777777777 777777777/77777/77777/7777///777/7//7/7/7/7777///////7/777/7/77///7/7/7/7/777777
double RT = BOLTZMANN_CONSTANT * T / m;

v[0] = frand_Gaussian ( u[0O], RT );
v[1] = frand_Gaussian ( u[l], RT );
v[2] = frand_Gaussian ( u[2], RT );

}
double frand_Gaussian ( double E, double V ) ///////////////////////////////////////////////

// Here E i1s the mean, V 1s the variance
{ 777777777777 7777777777777/77/7777777/7777/7//777/77/7/777/7777777/7//7////7/777/7/7/77/7/7/7/7/77/7/7777
relurn E + sare ( - 2.0 = W = log ( byeng () ) ) @ cos ( 2 0 = M Pl = brng () )

}

void vZ2rand_uniform_rect ( double &X, double &Y, double a, double b, double c, double d ) //

// (X,Y) are Cartesian coordinates of a point iInside the rectangle [a,b]x|[c,d]

{ 777777777777 77777777777777777777777777777/77///7/7/7/77/777/7////////////7///7//7/7///////7777
X=a+(b-a)*brng Q;
Y —c t (d =06 ) * bing ()

}
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6.5. Initial and boundary conditions for the 2D test problem

Implementation of generation of particles in a rectangular domain in a C++ code
(see DSMC2D_Template06.cpp)

void GenerateNewParticles ( double X1, double Y1, double X2, double Y2, double Ngas,
double Ugasx, double Ugasy, double Tgas, int MoveFlag )

{
// Here we calculate the number of particles to be added to the list (NP,P)
double V = (X2 - X1 ) * (Y2 -Y1 ) * DzZ; // Volume of the rectangular region (m"3)
double Nnew_avg = Ngas * V / Weight; // Average number of particles to be added
int Nnew; // Random number of particles to be added
iIT ( Nnew_avg > 20.0 ) { // Number i1f large; use standard method
Nnew = int ( Nnew_avg );
if ( brng () < Nnew_avg - Nnew ) Nnew++;
} else { // Number is not large; use Poisson distribution
Nnew = i1rand_Poisson ( Nnew_avg );
}
// Now we add new particles one by one
double Ugas[3] = { Ugasx, Ugasy, 0.0 };
Tt 101 1 i 3 - 0 W )
// Generate position
vZ2rand_uniform_rect ( PL[1]-X[O0], PLi]-X[1], X1, X2, Y1, Y2 );
// Generate velocity
vrand_MB ( P[1]-.V, MoleculeMass, Ugas, Tgas );
// Move particles during time step, iIf necessary
iT ( MoveFlag == 1 ) { // Move particle during time step
P[i]-X[0] += Dt * P[i]-V[O];
P[i]-X[1] += Dt * P[i]-V[1];
+
}
NP += Nnew;

}
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6.5. Initial and boundary conditions for the 2D test problem

Initial conditions
Since we are interested in the steady-state solution, the initial condition is arbitrary. But it is
useful to use the initial condition which is as much close as possible to the final steady-state
solution. In this case we can reduce time tg¢s (see slide 13 in this Chapter) required for the
transient process converging to the steady-state solution.
In aerodynamics, the initial conditions are often used in the form, corresponding of the
undisturbed free stream. In this case, the initial distribution of simulated molecules corresponds

to the Maxwell-Boltzmann distribution function in the free stream. In this case, the transient
2 process can be viewed as
. Neo m(v - lloo) propagation of disturbances
(6-5-1) f(V) - (Zﬂk T /m)g/z exp |— 2k T . introduced into the free
B~ oo B" stream by inserting the body

Implementation of initial conditions in 2D flow past a thin wing in a C++ code
(see DSMC2D_Template06.cpp)

void InitialConditions () /////7/77777/7777777//1/77/777/////177////////1///////7//////////777
{

Step = O;
Time = 0.0;
NP = O;

// Set to zero all counters of macroscopic properties

SampleStep = O;

SampleTime = 0.0;

memset ( C, 0, sizeof C );

// Here we distribute initial particles according to the distribution In the free stream
GenerateNewParticles ( X1, Y1, X2, Y2, NFree, UxFree, UyFree, TFree, 0 );

k;
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6.5. Initial and boundary conditions for the 2D test problem

Free stream boundary conditions at the external boundary

According to the formulation of boundary value problems for the Boltzmann kinetic equation,
the boundary conditions at any boundaries of the computational domain must be imposed only
for molecules that move from outside into the domain (see Section 3.9 and Egs. (3.9.4) and
(3.9.5)). There are no constrains on the distribution function of molecules that leave the domain
through the boundary. Distribution function of such molecules must be obtained as a result of
solution of the problem.

Corresponding boundary conditions in the DSMC simulations imply that at every time step

1. New particles are generated at the external boundary of the domains. These particles
simulate the inflow of particles into the computational domain from the free stream, where

Ny m(v - uoo)2

) = Grky T jmyarz P [_ 2k5Ten
2. All existed simulated particles that left the domain through the external boundary are
excluded from further consideration. Boundary -
Important note: Particles entering the domain from the Free stream
free stream do not have Maxwell-Boltzmann distribution L
of velocities. It happens, because the molecules that Uy
have large velocity v, in the direction normal to the
boundary, have large chance to move through the > Un
boundary when molecules with smaller v,,. Domain




6.5. Initial and boundary conditions for the 2D test problem

Although the inflow of molecules at the free stream boundaries can be simulated by the direct

approach, it is often (especially in the case of boundaries of a complex geometrical shape)

simulated indirectly based on the acceptance and rejection method as follows:

1. The domain is surrounded by auxiliary subdomains or reservoirs.

2. In every subdomain at every time step new particles are generated using the approach
considered before for implementation of the initial conditions (See slides 30-32).

3. Every particle from a reservoir moves during At. If the particle enters the domains, it is
added to the list of particles and used for further calculations, otherwise it is rejected.

Y4

» In the test problem, four rectangular
reservoirs are required. The reservoir
\ size Axp is stored in variable DL .

Y2 . .
U L » In every reservoir, new particles can

I be generated using function
E GenerateNewParticles (slide 32)

y with MoveFlag = 1.
by i » The size of the reservoir Axpis an
. important numerical parameter: It
Xq 0 X X5 x  Mmust be sufficiently large in order to
A allow high-velocity molecules enter
XR
V1 the domain during the time step.
g

Value of Axp depends on uy, RT,,
and At.
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6.5. Initial and boundary conditions for the 2D test problem

Implementation of free stream boundary conditions in the C++ code

(see DSMC2D_Template06.cpp)

void BoundaryConditions () ////////7/7//1//77//77//1////7///1///////////////////////////////////7//
{

// Here we generate new particles at the external boundaries of the computational domain

// where the distribution function of molecules entering domain is the free stream

// equilibrium distribution function

// Left boundary

GenerateNewParticles ( X1 - DL, Y1 - DL, X1, Y2 + DL, NFree, UxFree, UyFree, TFree, 1 );
// Right boundary

GenerateNewParticles ( X2, Y1 - DL, X2 + DL, Y2 + DL, NFree, UxFree, UyFree, TFree, 1 );
// Bottom boundary

GenerateNewParticles ( X1, Y1 - DI . X2 Y1 NEtree |IXFree UyFree, 1TFree |1 )°

// Top boundary

GenerateNewParticles ( X1, Y2, X2, Y2 + DL, NFree, UxFree, UyFree, TFree, 1 );

// Here we remove all particles that are located outside the domain
o €1 0 1 Py o

iIfT ( P[i]-X[O] <= X1 ]| PLi]-X[0] >= X2 ]| PLi]-X[1] <= Y1 ]| PL[i]l-X[1] >= Y2 ) {
// Particle 1 1s outside the domain, so we replace P[1] with P[NP-1]
iIT (1 <NP -1 ) memmove ( &P[1], &P[NP-1], sizeof ( PCL ) );
NP--;
} else {
i++;
+
+
}
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6.5. Initial and boundary conditions for the 2D test problem

» Once the free stream boundary conditions are implemented, the code
(DSMC2D_Template06.cpp) can be used in order to simulate the equilibrium free stream.

» It is a good practice to check that the code is capable of reproducing simple flows with
known properties.

Typical results with parameters specified in DSMC2D_Template06.cpp are shown below

Number density n/n, Temperature T /Ty,

SRR SR RS e
.'Q"’ < | ) ) ‘.3.' : \‘ 0 .v Q g ‘@‘? 4 T
1.02 NIl Artey (gL & rEEeSR 1.02
1.015 1.5 il o &, LAY el el
1.01 o\ & 3 A8 OAERB A 161
1.005 1.005

0.995
0.99
0.985
0.98

0.995
0.99
0.985
0.98

» These fields are obtained after sampling of gas parameters during 90,000 time steps with 10
simulated molecules per cell in average.

» These parameters provides constant distributions with the statistical scattering (fluctuations)
at the level of 2%.
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6.5. Initial and boundary conditions for the 2D test problem

Boundary condition of diffuse scattering of gas molecules from the wing surface

According to the model of diffuse scattering, the scattering probability density function S(v|n,,)
is equal to (here T, = T,,, see Section 3.8 and Eq. (3.8.9))

|V ) nwl v?
2m(RT,)2 P [_ 2RTW] '
This equation defines the PDF of components of the velocity vector v of an individual molecule
after reflection from the body surfaceatv-n,, = 0.

(6.5.2) S(viny,) =

In the test problem, the n,, is equal to te,. Let's
consider the case n,, = e, (another case with n, =
— e,, can be considered using the same approach) and
re-write Eq. (6.5.2) for individual components of v:

vy vy + v+ vy
(6.5.3)
5 () = v v? 5, (v) = 1 v?
W= o P ToRT | T rRT, V| 2RT,|

It means that the normal component of velocity v, has Rayleigh distribution with parameter

o = /RT,, (see Section 5.4, slide 28 in Chapter 5) and the tangential components v, and v,
have Gaussian distribution with zero mean and variance RT,,.

ME 591, Non-equilibrium gas dynamics, Alexey Volkov 43



6.5. Initial and boundary conditions for the 2D test problem

Then the generation of a random velocity vector of a molecule after diffuse scattering from the
wing can be implemented in the following C++ function (here the variable Ny defines the
direction of the normal and can be equal to +1):

void DiffuseScattering ( double *v, double m, double Tw, double Ny ) ///////////////////////

{
double RTw = BOLTZMANN_CONSTANT * Tw / m;

v[O0] = frand_Gaussian ( 0.0, RTw );
v[1] = Ny * frand_Rayleigh ( sqrt ( RTw ) );
v[2] = frand_Gaussian ( 0.0, RTw );

}

For every simulated particle, the following sequence of calculations must be performed:

1. Check whether the particle trajectory during At intersects the body surface or not.

2. |If yes, calculate the position of the particle on the surface and time At; from the beginning
of the time step until interaction.

3. Replace particle velocity with the new random velocity according to the model of interaction

of gas molecules with the surface, e.g., Egs. (6.5.4) for the diffuse model. | Ay

4. Move particle from the body during time At — At;.
| ~ Ay, | | 18y, =0

In order to implement # 2, we need to know positions of the
particle in the beginning and at the end of the time step and : T Ay,
then to perform linear interpolation to the point of
interaction. This can be easily done along with displacement
of particles in function MoveParticles (). At — At; = At — AtAy, /(Ay, — Ay,) (6.5.4)
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6.5. Initial and boundary conditions for the 2D test problem

Implementation of boundary conditions of diffuse scattering on the wing surface in a C++ code
(see DSMC2D_Template07.cpp)

void MoveParticles () //////7/77/7/7/7/7//7/////77///77/7/7/7/7/////////77/7/777/7/7////7/////77/7777
{
for € 1ie 1 - 0 1 = NES %t ) &
double X0 = P[1]-X[O0];
double YO = P[i]-X[1];
T ot o 1 - 0w I ol 3 Rl das o B Pl ]
// Here we implement diffuse scattering of gas molecules from the wing
C C YO - WingY ) * ( P[i]-X[1] - WingY ) < 0.0 ) {
// Linear interpolation to point Y = WingY
double Xw=( XO*(WingY-P[i]-X[1]DD+P[i]-X[0]*(YO-WingY))/(YO-P[i]-X[1]D);
w > WingX && Xw < WingX + WingLength ) {
// Molecule interacts with the wing during the time step
// Linear interpolation of the time of scattering, Eq. (6.5.4)
double Dtl1 = Dt - Dt * ( YO - WingY ) /7 ( YO - P[i]-X[1] );
// Generate velocity vector of the reflected molecule
DiffuseScattering(P[i].V,MoleculeMass,Tw, (YO-WingY>0)?1.0:(-1.0));
// Move the reflected molecule
P[i]-X[O0] = Xw + Dt1 * P[i1]-V[O];
P[i]-X[1] = WingY + Dtl1 * P[i]-V[1];

}

Next we check that the
coordinate x of the point, where
the particle crossed the line y =

Y, belongs to the wing, i.e.
X=X =1, I

Here we first check that
particle trajectory crosses
the liney = y,,: See
sketch in slide 31 in this
Chapter
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6.5. Initial and boundary conditions for the 2D test problem

Example: Simulation of free molecular (collisionless) flow

» Once all boundary conditions are implemented, the code (DSMC2D_Template07.cpp) can be

used in order to simulate the free molecular (collisionless) flow over a wing.
» This flow can be considered as a limit case when n, is such small that Kn., < 1.

Typical results with parameters specified in DSMC2D_TemplateO7.cpp are shown below
Ma, = 4, a = 30°
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6.6. Sampling of binary collisions

» Sampling of post-collisional velocities for the VHS molecular model
» Sampling of colliding pairs

» Primitive scheme

» The No Time Counter scheme

» Transitional flow past a wing
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6.6. Sampling of binary collisions

As a results of indexing, the list of simulated particles located in every cell of the computational

mesh is known. Sampling of binary collisions implies

» Sampling of colliding pairs: Selection of random pairs of colliding particles from the particle
list in the cell.

» Sampling of post-collisional velocities: Replacement of velocities of colliding pairs of
molecules with post-collisional velocities.

Both parts of this approach must be performed in agreement with the structure of collisional

term in the Boltzmann kinetic equation and chosen molecular model (model of a binary

collision).

Sampling of post-collisional velocities for the VHS molecular model
Post-collisional velocities after a binary collisions of molecules { and j are given by Egs. (2.4.26):
Vi=v;+[(v—vi) nln, =v; —[(v —vi) -n|n.

In the case of the VHS molecular model, however, it |s easier to use equations that follow from

Egs. (2.4.6) and (2.4.9):
1 1 Vi + V]

(661) V’i: Ve — Ec,h V’j =V, + ECIT; Ve = 2

where the unit vector e’ defines the direction of relative velocity ¢’, after the collision.
Distribution of directions of €', is given by the differential collision cross section o(y, C,-) (see
Eq. (2.5.10)). But according to the VHS model, 0 = a(C,) (see Eq. (2.6.5)) and, consequently,
e’ is an isotropic random vector. Random components of e’,,. can be sampled using the
approach considered in Section 5.4 (slides 41 and 42 in Chapter 5).

) ¢, = |Vj - Vile,cr-
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6.5.Initial and boundary conditions for DSMC simulations of the test problem

Then generation of random velocity vectors of molecules after binary collision can be
implemented in the following C++ function:

void ElasticCollision ( double *V1, double *V2, double Cr ) ////////////////////////////////
// Elastic collisions of molecules with the same masses used for both HS and VHS models
{ /1117777777777 7777777777777777777777//77//777/777//77/77/7/7///7/77////////7/77/7///7/7////////7/7777
double N[3];

v3rand_isotropic ( N );

(r = 5
dolible vels) — £ 0.5 & ¢ V210F + VIO . 0.5 t 0 VPR a yiliday g6 = (V121 « V1|94 ) Y-

double VvCri3] — £ Cr = NJO]. Cr = NJ1], Cr * NI2] }:!
Vvi[0] = VC[O] + VCr[O];
Viji] = vC]l1] + vVCrji]:
vij2] = VC]2] + VCr]2];
v2[0] = VvC[0O] - VCr[O];
v2[1] = VvC[1] - VCr[1];
v2[2] = VC[2] - VCr[2];

Ie

In this function, it is assumed that the absolute relative velocity ¢, = |v; — v;| is calculated
preliminary and passed to this function through the input parameter Cr.

Sampling of colliding pairs
Sampling of colliding pairs is the central part of any DSMC method. Different DSMC methods are
different by the approach used for sampling of colliding pairs. We consider two approaches:
» Primitive scheme that follows from the Bernoulli trial.
» No Time Counter (NTC) scheme proposed by G.A. Bird.
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6.6. Sampling of binary collisions

Let’s consider a cell of volume V where N simulated molecules are located. These N molecules
form N(N — 1)/2 of different pairs. In the “standard” DSMC technique, molecules are assumed
to be distributed homogeneously inside the cell and relative position of particles with respect to
each other is not taken into account. Any binary collision between particles with indices i and j
is considered as a random event that happens during time step At with some probability P;;.

Relative velocity of molecules i and j:

Cell of volume V
containing N molecules Cr(ij) = |Crpl Crijpy =V — Vi,
Total collision cross section of these
molecules:
Pij is just
the ratio of or(ij) = UT(Cr(ij))
volume of ]
the collision Probability of a random collision
cylinder and between molecules i and j during time
the cell step (assuming that At is sufficiently
smalland P;; < 1:
A
OT(ij,sim)
s mmtnatt oty
(6.6.2) e V o V
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6.6. Sampling of binary collisions

Primitive scheme
In the primitive scheme, all pairs of molecules in the cell are
considered one by one, for every pair the collision probability

P;; is calculated and then random collision event is sampled
with probability P;; (see Section 5.5). The flowchart of this
primitive scheme can be formulated as follows:

Calculation of the collision probability

Does the collision occur?

) Sampling of post-collisional velocities

Are there other pairs of molecules
in the cell?

yes /\ no
[« N | > Go to the next cell

l

The disadvantage of the primitive scheme is the large number of arithmetic operation, which is
proportional to the N2 and increases fast with increasing N.
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6.6. Sampling of binary collisions
The No Time Counter scheme

The NTC scheme by Bird utilizes the acceptance and rejection Monte Carlo method and is based
on the introduction of a majorant [07C, | max, i-€. such quantity that

[07Crlmax= Or(j)Crij)  for pairs of particles (i, j) in the cell.
Worj Crinht
|4

Probability of a binary collision during At: P =

P;; WUT(ij)Cr(ij)

At
N N— N
w
E _72 E 9T (i) Cr (i)
=i+1 i=1j

N(N-1)W

O-TC max — 5 v 07 Cr ] max

Collision frequency for a pair of molecules:  z;; =

Collision frequency in the cell: Zeol =

Majorant collision frequency W N-—
in the cell: Zomax = _Z
|4 =t

In the NTC scheme, Ny 4ir = ZpaxAt random pairs (i, j) of molecules is selected, but for every
pair collision happens with probability P.o;; = 071 Crij)/[0rCr]max- In this case, the number
of arithmetic operations is proportional to N log N and grows with N much slower than in the
primitive scheme. Majorant [07C} | max iS important numerical parameter of the NTC scheme.

+'.\42 ﬂ\MIZ




6.6. Sampling of binary collisions

»  Npgir = ZimaxAt collisions are sampled during time step.

»  Real collision (accepted collision) occurs with probability P.o;; = 07¢ij)Cr(ij)/[0rCrImax-
»  All other collisions are fictitious (rejected collisions).

The simplified flowchart of the NTC scheme can be formulated as follows:

i i i A NT TAT |

Calculation of the majorant collision number,
must be reduced to an integer value

ool A

Loop over all collisions

Sampling of random indices of
colliding molecules,
must ensure thati # j

Calculation of probability of real collision

Is this a real collision?

Fictitious
collision

 call Elast

Sampling of post-collisional velocities

» Go to the next cell

No

Yes

ME 591, Non-equilibrium gas dynamics, Alexey Volkov



6.6. Sampling of binary collisions

NTC scheme is proven to provide correct collision statistics and to be in agreement with the
Boltzmann equation.

Implementation of the NTC scheme in the C++ code (see DSMC2D_Template08.cpp)

int BinaryCollisionsinCell ( double CellVolume, int NPC, int *IPC ) ///////////////////////

{

double
double

int
double

int
int

}

iIT ( NPC < 2 ) return 0; // No collisions if there are less than 2 simulated particles
SCMax = 9.0 * SigmaRef * sqrt ( BOLTZMANN_CONSTANT * TFree / MoleculeMass );

Npair

//
NN
N1
NN
1
NC

0.5 * NPC * ( NPC - 1 ) * Weight * SCMax * Dt / CellVolume;

Random number of collisions/pairs to be dranw in the cell during current time step

([FR T A B

int ( Npair );
Npair - NN;
€ brng () <« Bl 3 2 NN £ 1 © NN

0: // Counter of collisions

for ( int k = 0; k < NN; k++ ) { // Sampling of collisions

}

i = irand_uniform ( NPC );

do { J = irand _uniform ( NPC ); } while ( J == 1 );

// Indices of colliding molecules in the global list of particles (NP,P)
i = IPC[1];

i = IPCLi1:

double VCr[3]={ PLil1-VIO1-P[i].V[O], P[31-V[1]-PL[i]-V[1], P[J1-VI2]-PL1].V[2] };

tonble Cr = sarf ¢ vorlo] = ool + yorli] = vl + el 2l & yiglo] )y
double Sigma = SigmaRef * pow ( CrRef / Cr, Omega ); // VHS total cross section
if (brng O < Sigma * Cr / SCMax ) { // Real collision

ElasticCollision ( P[i]-V, P[j]1-V, Cr );

NC++;
}

return NC;

ME 591, Non-equilibrium gas dynamics, Alexey Volkov

54



6.6. Sampling of binary collisions

» Once collision sampling is implemented, the code (DSMC2D_Template08.cpp) can be used to

simulate equilibrium free stream with collisions.
» It is a good practice to check that the code is capable of reproducing simple flows with

known properties.
Typical results with parameters specified in DSMC2D_Template08.cpp are shown below

MFP

1.056
1.04
1.03
1.02
1.01

MFT

1.05
1.04 15K

1.03 2
1.02
1.01

0.99
0.98
0.97
0.96
0.95

0.99
0.98 :
097 0.5 [l
0.96 5
0.95

0 05 1 15 2

2 15 1 05

X
» These fields are obtained after sampling of gas parameters during 90,000 time steps with 10

simulated molecules per cell.
» These parameters provides constant distributions with the statistical scattering (fluctuations)

at the level of 5%.

ME 591, Non-equilibrium gas dynamics, Alexey Volkov 55



6.6. Sampling of binary collisions

Transitional flow past a wing
DSMC2D_Template08.cpp is a fully functional version of the DSMC code.

Typical results with parameters specified in DSMC2D_Template08.cpp are shown below.

Aoo
May = 4, a = 30°, Kn, = 7 - 0.065

Temperature T /Ty,

ME 591, Non-equilibrium gas dynamics, Alexey Volkov 56



6.6. Sampling of binary collisions

I "

One can introduce partial “temperatures” that characterize energies of chaotic motion of
individual degrees of freedom f = x, y, z (compare with equations in slides 23 and 24):

kBTB 1 m(vﬁ — u[;)z 1
> zﬁj > f(r,v,t)dv, T:§(Tx+Ty+TZ)

Under conditions of equilibrium, equipartition of energy between different degrees of freedom
must be established and

T=T,=T,=T,.
The differences between T, T, T,, T, can be used as measures of degree of non-equilibrium.

T,/To T, /T

See also
comments in slide
42 of Chapter 1

One can conclude that
the transitional flow at
Kny, = 0.065 is strongly
non-equilibrium
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6.7. Numerical parameters of the DSMC method

> Sources of errors in the DSMC simulations

» Major numerical parameters of the DSMC simulations
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6.7. Numerical parameters of the DSMC method

Sources of errors in the DSMC simulations

We have a solution. What is its value?

Three sources of errors in the DSMC simulations:

>

Poor physical models:

Collision cross-sections, gas-surface interactions, chemical reactions, etc.

Finite dispersion of gas parameters obtained as averages of random values:

Intrinsic statistical noise (scattering) in gas parameters obtained in the DSMC simulations
reduces with increasing sample size N, (or increasing tp — tss), i.e. increasing the
number of simulated particles whose molecular quantities are averaged in every cell for
calculation of macroscopic gas parameters.

Numerical (discretization) errors:

Controlled by the primary numerical parameters of the DSMC method (cell size Ax,
statistical weight W, time step At) and secondary numerical parameters like the reservoir
size Axp, majorant [07C,]max in the NTC scheme, and some other parameters (position of
the free stream boundaries).
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6.7. Numerical parameters of the DSMC method

Major numerical parameters of the DSMC simulations
Cell size Ax:
Should be small as compared to the local mean free path of gas molecules, A, in order
to ensure homogeneous distribution of molecules in cell

Tx <01+0.5 (some problems can be solved at Ax = 7).

Statistical weight W'
Should be small enough in order to provide sufficient number of simulated molecules
in every cell, N, for correct collision statistics and reduced statistical dependence
between simulated molecules (the Boltzmann equation is obtained assuming
molecular chaos, i.e. complete statistical independence)

N > 10—-30 (some simulation can be performed even at N = 1).

Time step At :
Should be small enough as compared to the mean free time between collisions, 1, in
order to make possible time-splitting of real evolution into the sequence of
collisionless motion and “motionless” collisions and use of collision probability
in the form of Eq. 6.6.2)

- < 0.1+0.5, Ax < 0.5, (U, characteristic velocity of gas molecules).
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