

Designing Digital
Circuits Using VHDL©

partial draft
January 2012

Jonathan Turner

Jonathan Turner

5

1. Getting Started

Let’s start with the basics. Signal assignments are the most common
element of a VHDL circuit specification. Here's an example.

A <= (B and C) or (not D);

Here, A, B, C and D are names of VHDL signals; <= is the signal assignment
operator and the keywords and, or and not are the familiar logical
operators. The parentheses are used to determine the order of operations
(in this case, they are not strictly necessary, but do help make the meaning
more clear) and the semicolon terminates the assignment. This assignment
can be implemented by the combinational circuit shown below.

Any logic circuit made up of AND gates, OR gates and inverters in which
there are no feedback paths is a combinational circuit (a feedback path is a
circuit path that leads from a gate output back to an input of the same
gate). Every VHDL assignment corresponds to a combinational circuit,
and any combinational circuit can be implemented using one or more
VHDL assignments. The specific circuit shown above is only one possible
implementation of the given signal assignment. Any logically equivalent
circuit is also an acceptable implementation (when we say logically
equivalent circuit, we mean any circuit that produces the same output
value as the above circuit for every set of input values). The meaning of the

Designing Digital Circuits Using VHDL©

 6

given assignment is any circuit that is logically equivalent to the one
shown above.

The following pair of signal assignments specifies one bit position of an
n bit adder.
S <= A xor B xor Ci;
Co <= (A and B) or ((A xor B) and Ci);

Here, A and B represent corresponding bits of the two binary numbers
being added together and Ci represents the carry into this bit position. S
is the sum for this bit position and Co is the carry out of this bit position.
The xor keyword represents the exclusive-or operator. For any
expressions X and Y, X xor Y is equivalent to
(X and (not Y)) or ((not X) and Y)

We note that no parentheses are required in the assignment to S since the
exclusive-or operator is associative. This pair of assignments could be
implemented by two separate circuits that happen to share the same
inputs, but the circuit shown below provides a more efficient
implementation, since it uses the first exclusive-or gate to produce both of
the output signals.

The signal assignments are only one part of a VHDL circuit specification.
To completely define a circuit, we must also specify its inputs and
outputs. As an example, here is a complete specification of the full adder
circuit.

Jonathan Turner

7

-- Full adder.
-- Produces sum bit (S) and carry-out (Co),
-- given data inputs (A,B) and carry-in (Ci).

entity fullAdder is port(
 A, B, Ci: in std_logic;
 S, out: out std_logic);
end fullAdder;

architecture faArch of fullAdder is
begin
 S <= A xor B xor Ci;
 Co <= (A and B) or ((A xor B) and Ci);
end faArch;

The first three lines are a comment describing the circuit. In general, a pair
of dashes introduces a comment, which continues to the end of the line.
Comments don’t affect the meaning of the specification, but are essential
for making it readable by other people. It’s a good idea to use comments
to explain the inputs and outputs of your circuits, document what your
circuits do and how they work. Get in the habit of documenting all your
code.

The next few lines are the entity declaration for our full adder circuit.
The entity declaration defines the name of the circuit (fullAdder), its
inputs and outputs and their types (std_logic). The inputs and outputs
are specified in a port list. Successive elements of the port list are separated
by semicolons (note that there is no semicolon following the last element).

The last five lines above, constitute the architecture specification, which
includes two signal assignments. VHDL permits you to have multiple
architectures for the same entity, hence the architecture has its own label,
separate from the entity name. Note that the architecture name also
appears in the statement that ends the architecture specification.

Designing Digital Circuits Using VHDL©

 8

It's important to understand the distinction between the entity
declaration and the architecture. The entity declaration defines the
circuit’s external interface and the architecture defines its internal
implementation. In a block diagram or abridged schematic, we often show
a portion of a larger circuit as a block with labeled inputs and outputs, as
illustrated below for the fullAdder.

This corresponds directly to the entity declaration. When we supplement
such a diagram, by filling in the block with an appropriate schematic, we
are effectively specifying its architecture.

We often find it convenient to define internal signals that are used in other
assignments, but are not outputs of the circuit we are specifying. For
example, we might specify the full adder using the following assignments.
generate <= A and B;
propagate <= A xor B;
S <= propagate xor Ci;
Co <= generate or (propagate and Ci);

This specifies a circuit that is logically equivalent to the previous one.
Before we can use these internal signals, we must declare them. Here’s a
modified version of the architecture that includes the necessary
declarations.

Jonathan Turner

9

architecture faArch2 of fullAdder is
signal generate, propagate: std_logic;
begin
generate <= A and B;
propagate <= A xor B;
 S <= propagate xor Ci;
 Co <= generate or (propagate and Ci);
end faArch2;

This example provides a good illustration of the difference between
VHDL and conventional programming languages. Suppose that we wrote
the assignments as shown below.
S <= propagate xor Ci;
Co <= generate or (propagate and Ci);
generate <= A and B;
propagate <= A xor B;

If these were assignments in a conventional programming language this
version would not mean the same thing as the original version. Indeed, it
might trigger an error message since propagate and generate are
being used before they have been assigned values. However, in VHDL
this version has exactly the same meaning, as the original because they
both specify the same circuit. The order in which the statements appear
makes no difference.

VHDL also supports composite signals or signal vectors which allow
several simple signals to be treated as a unit. For example, if A and B are
both signal vectors that represent the component signals A0, A1, A2 and
B0, B1, B2 the assignment A<=B; is equivalent to the three simple
assignments
A(0) <= B(0); A(1) <= B(1); A(2) <= B(2);

If C is a similar signal vector, the assignment A<=B and C; is equivalent
to

Designing Digital Circuits Using VHDL©

 10

A(0) <= B(0) and C(0);
A(1) <= B(1) and C(1);
A(2) <= B(2) and C(2);

We can also refer to parts of signal vectors. So, the assignment
 A(0 to 2) <= B(3 downto 2) & C(2);

is equivalent to
A(0) <= B(3); A(1) <= B(2); A(2) <= C(2);

Here the ampersand (&) is a signal concatenation operator that is used to
combine signals or signal vectors to form longer signal vectors. The
direction indicators, to and downto, determine which end of a range of
signals is considered the left end and which is the right end. Signal
assignments use this notion of left-to-right ordering to determine which
signals of the right-hand side vector are paired with signals on the left-
hand side.

The right-hand side of a signal assignment may also include constant
values, and there are several ways to specify constants. Single bit values
are enclosed in single quotes ('0' or '1'). Multi-bit signals are written as
strings enclosed by double quotes ("001" or "11001"). For multi-bit
signals with more than a few bits, it's convenient to use hexadecimal
constants. The constant x"c4" specifies the same value as "11000100".
VHDL allows constants to be specified in more general ways as well. For
example, if A is an 8 bit signal vector, then the assignment
A <= (7|6 =>'1', 5 downto 3 =>'0', others =>'1');

is equivalent to A <= "11000111". The special case
A <= (others => '0');

provides a convenient way to specify that all bits of A are 0. This works no
matter how many bits A actually has.

Jonathan Turner

11

2. Warming Up

In Chapter 1, we saw how we could use VHDL to design some very
simple combinational circuits. In this chapter, we’ll introduce some
additional features of the language and see how they can be used to
design more complex circuits. As an example, we’ll use a circuit that
implements a very simple arithmetic calculator. The circuit has an 8 bit
data input called dIn, an 8 bit data output called result and control
inputs clear, load and add. It has an internal storage register that can
store an 8 bit value. The result output is the value stored in this register.
When the clear input is asserted, the stored value is cleared, when the
load input is asserted the value of dIn is stored, and when the add input
is asserted, the value of dIn is added to the stored value. The entity
declaration for the circuit is shown below.

entity calculator is port (
 clk: in std_logic;
 clear, load, add: in std_logic;
 dIn: in std_logic_vector(7 downto 0);
 result: out std_logic_vector(7 downto 0));
end calculator;

The clk input controls when the circuit responds to control inputs. In
particular, it performs an operation only when the clk input makes a

Designing Digital Circuits Using VHDL©

 12

transition from low to high. So here is the architecture of a circuit that
implements the desired functionality.

architecture calcArch of calculator is
signal dReg: std_logic_vector(7 downto 0);
begin
 process (clk) begin
 if rising_edge(clk) then
 if clear = '1' then
 dReg <= x"00";
 elsif load = '1' then
 dReg <= dIn;
 elsif add = '1' then
 dReg <= dReg + dIn;
 end if;
 end if;
 end process;
 result <= dReg;
end calcArch;

The storage register dReg is declared at the beginning of the architecture
specification. The process block implements the core functionality of the
circuit. The initial if-statement defines a synchronization condition on the
clk signal. All assignments within the scope of the synchronization
condition take place when there is a low-to-high transition on the clk
signal. What this means, in terms of the circuit implementation, is that the
signals that are assigned values within the scope of the synchronization
condition must be stored in clocked registers that are triggered by the rising
edge of clk. In this case, it means dReg is stored in such a register. Here’s
a diagram of a circuit that implements the given VHDL specification.

Jonathan Turner

13

This circuit diagram includes some components that we haven’t seen so
far. The block labeled Adder implements an eight bit binary addition
function, so its 8 bit output is the sum of its two 8 bit inputs. The
trapezoidal symbols are 2:1 multiplexors. Each of these has a pair of data
inputs labeled 0 and 1, and a data output, on the right. They also have a
control input at the bottom. The output of a 2:1 multiplexor (or mux, for
short) is the value on one of its two data inputs. In particular, if the control
input is low, the output is equal to the value on the data input labeled 0,
and if the control input is high, the output is equal to the value on the data
input labeled 1. The adder and multiplexor components are combinational
circuits, so they can be implemented using AND gates, OR gates and
inverters with no feedback.

The rectangular component at the right of the diagram is a clocked
register made up of positive edge-triggered D flip flops. A flip flop is a
storage device capable of storing one bit of information. The clocked D flip
flop is the particular type of flip flop that is used most often. It has a data
input and a clock input. The value stored in the flip flop appears as its
output. A new value is stored in the flip flop every time the clock makes a
transition from low to high. In particular, the value that is present on the
D input is stored whenever such a transition occurs. Clock signals like
clk are usually periodic, square wave signals with a fixed frequency. So

Designing Digital Circuits Using VHDL©

 14

for example, if clk were a 50 MHz square wave, the calculator circuit
could potentially perform an operation every 20 ns.

Considering the block diagram, we can see that on every clock
transition, a value is stored in the register. If the clear signal is high, this
value is x00. If the clear signal is low, but the load signal is high, the
value stored comes from the data input. If clear and load are low, but
add is high, the stored value is the sum of the “old” value and the data
input. Finally, if all the control signals are low, the register is loaded with
its old value (so, it doesn’t change). Note how this reflects the logic
expressed in the VHDL specification. Also notice how various elements of
the circuit correspond to the VHDL. In particular, because the dReg signal
is assigned within the scope of the synchronization condition, a register of
clocked flip flops is included in the circuit to hold its value. The inner if-
then-elsif-elsif construct in the VHDL specification is implemented using
the sequence of multiplexors in the circuit diagram. Each condition
determines the value of the control input of one of the multiplexors.

There are a couple more details worth noting. First, observe that the
process statement includes the clk signal in parentheses. In general, the
process statement can have a list of signals associated with it. This is
called the sensitivity list. By placing a signal in the sensitivity list, we are
making an assertion that the signals that are controlled by the process
only change when one of the signals in the sensitivity list changes. In this
case, because all assignments in the process fall within the scope of the
synchronization condition, the signals controlled by the process can only
change when clk changes.

Second, notice that the result output is assigned a value outside the
process block. We could have placed this assignment inside the process
block so long as it was placed outside the scope of the synchronization
condition. If we had placed it inside the scope of the synchronization
condition, the implementation would have included an additional register
for result, connected in pipeline fashion to the register for dReg. This
would effectively delay the appearance of the result by one clock tick,
which is not what we want in this case.

Jonathan Turner

15

Processes can also be used to define purely combinational circuits. For
example, we could re-write the full-adder circuit from the previous
chapter as shown below.
architecture a1 of fullAdder is
begin
 process (A, B, Cin) begin
 Cout <= A;
 if A /= B then
 S <= not Cin;
 Cout <= Cin;
 else
 S <= Cin;
 end if;
 end process;
end;

This VHDL specification can be implemented by this circuit.

which is logically equivalent to the circuit we saw in the previous chapter.
Notice that the process does not include an if-statement with a
synchronization condition. This means that the signals that are specified
by the process (S and Cout) need not be stored in flip flops. Also notice
that S and Cout are defined for all possible combinations of the input
signals A, B and Cin. It’s important that this be true for any process that
we are using to define a combinational circuit. If we do not specify an

Designing Digital Circuits Using VHDL©

 16

output for all possible input values, the VHDL language processor
assumes that we intended for that output to retain its “old” value for that
undefined set of inputs. For example, suppose we left out the default
assignment of A to Cout. This would imply that whenever A and B go
from being unequal to equal, the value of Cout should not change. The
circuit shown below uses a D-latch to provide the required behavior.

A D-latch is a storage element that is similar to a flip flop, but it stores a
new value not on the rising clock edge, but anytime the control input (C) is
high. It useful to think of the D latch as being “transparent” when the C
input is high (that is, the output equals the input), and it retains its “old
value” whenever the C input is low. Notice that the symbol for the D-latch
while similar to that the D flip flop is slightly different, since the clock
input of the D flip flop is labeled with ‘>C’, where the ‘>’ indicates that
the input is sensitive to the clock edge.

It’s easy, when writing a process to implement a combinational circuit,
to accidentally leave out an assignment that’s needed to guarantee that the
process’ output signals are defined for all combinations of its input
signals. When this happens, a circuit synthesizer will infer a latch to
produce the specified behavior. If this is not what we want, the result will
be a circuit that behaves differently from how we intended. This can be
baffling when we are trying to verify the circuit’s operation. A good way
to avoid this problem is to assign some default value to every output signal
of a process, right at the top of the process.

This example brings out another point about VHDL that is worth
emphasizing. Let’s take another look at the process.

Jonathan Turner

17

 process (A, B, Cin) begin
 Cout <= A;
 if A /= B then
 S <= not Cin;
 Cout <= Cin;
 else
 S <= Cin;
 end if;
 end process;

In Chapter 1, we discussed an example in which the relative order of
several assignment statements did not have any effect on the meaning of
the VHDL. However, within a process, the relative order of assignments to the
same signal does matter. So for example, if we moved the assignment Cout
<= A so that it came after the if-then-else, the resulting circuit would
cause Cout to equal A all the time. This is what we would expect, based
on our experience with ordinary programming languages, but is different
from what we might expect, based on our earlier discussion about
ordering of assignments. The crucial distinction is that here we are talking
about two assignments to the same signal within a process. VHDL treats
the initial assignment to Cout as a default value to be used under any
conditions where the value of Cout is otherwise unspecified. This leads to
behavior that is similar to what we are used to from ordinary
programming languages, but is not quite the same, since here we are still
defining a circuit, not specifying a sequence of memory storage
operations, as in conventional programming. It’s important to keep this in
mind when writing circuit specifications using processes.

There is one last aspect of this example that merits a closer look, and
that is the sensitivity list. Notice that in this case, the sensitivity list
includes the signals A, B and Cin. These signals are included, because a
change to any one of these signals can cause the outputs of the process (S
and Cout) to change. When using a process to define a combinational

Designing Digital Circuits Using VHDL©

 18

circuit, it’s best to include all signals that appear in conditional
expressions or on the right side of assignments, in the sensitivity list.
Now, you might be wondering, what’s the point of the sensitivity list, and
that’s a reasonable question. The sensitivity list is included in the
language primarily as an aid to simulation and modeling tools. If a circuit
simulator knows that the only signals that can affect the outputs of a
process are the ones included in its sensitivity list, it only needs to update
its simulation state for the process when one of those signals changes.
Unfortunately, if one inadvertently neglects to include a signal in the
sensitivity list, this can cause a circuit simulation to behave differently
than we expect. So, one of the first things to do when a simulation of a
combinational process is behaving strangely, is to double-check the
sensitivity list and make sure that every signal that can affect the process’
outputs is included.

Before concluding this chapter, there are a few more things it’s
important to point out about processes. First, an architecture may contain
more than one process, but there is an important restriction on how
different processes interact. In particular, each signal that is defined
within an architecture should be specified (assigned a value) by only one
process. If two different processes had assignments to the same signal, the
resulting circuit would contain two different sub-circuits, each trying to
control the value of the shared signal. While one can build circuits like
this, the usual outcome of doing so is the destruction of the circuit, often
accompanied by a puff of blue smoke and a nasty smell. Now, signal
assignments that appear outside of processes, are treated as one-line
processes, so far as this rule is concerned. So if a signal is assigned a value
outside of any process, it should not also be assigned a value inside a
process. Also, a signal should typically be assigned a value by at most one
assignment that lies outside of any process.

We noted earlier that a process may contain some statements that lie
within the scope of a synchronization condition and others that lie outside
the scope of the synchronization condition. Those statements that lie
“within scope” determine the values of signals that are stored in registers.
Those statements that lie outside the scope usually specify combinational

Jonathan Turner

19

sub-circuits. Consequently, if a signal x is assigned a value within the
scope of a synchronization condition, it should not also be assigned a
value outside the scope of the condition.

Designing Digital Circuits Using VHDL©

 20

3. Simulating Digital Circuits

Simulation is a powerful tool for verifying that a digital circuit works the
way we intend it to. In order to do a circuit simulation, we must specify a
sequence of inputs to the circuit that allows us to observe the circuit’s
operation under a wide range of conditions. To illustrate this, let’s start by
considering the calculator circuit from Chapter 2. The VHDL specification
is repeated below.
entity calculator is port (
 clk: in std_logic;
 clear, load, add: in std_logic;
 dIn: in std_logic_vector(7 downto 0);
 result: out std_logic_vector(7 downto 0));
end calculator;
architecture a1 of calculator is
signal dReg: std_logic_vector(7 downto 0);
begin
 process (clk) begin
 if rising_edge(clk) then
 if clear = '1' then
 dReg <= x"00";
 elsif load = '1' then
 dReg <= dIn;
 elsif add = '1' then
 dReg <= dReg + dIn;
 end if;
 end if;
 end process;
 result <= dReg;
end a1;

Jonathan Turner

21

As it stands our circuit specification is not quite complete. Before we can
simulate it, we need to add the following lines before the entity
declaration.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

The first line instructs the language system to load a standard library of
common definitions called IEEE (this library was standardized by the
Institute of Electrical and Electronics Engineers). The three use statements
instruct the system to use three specific packages contained within the IEEE
library. We will defer discussion of what’s in these packages. For now, just
keep in mind that the library and use clauses must be included in your
VHDL specification every time you declare a new entity-architecture pair.

Now, let’s look at a simulation of the calculator. Here is a waveform
display that demonstrates the operation of the circuit.

Designing Digital Circuits Using VHDL©

 22

The signal names appear at left, starting with clk, followed by the three
control inputs, the data input and the results output. Notice how the
clear signal causes the result output to go to zero, how the load signal
causes a new value to be loaded from dIn and how the add signal causes
the value on dIn to be added to the stored value. Also, note how every
change to result happens on the rising clock edge, since this is when the
internal register changes.

To produce such a simulation, we need to specify the sequence of input
values to be applied to the circuit. When designing circuits with VHDL,
this is done using a testbench. A testbench is essentially an ordinary
program that specifies the sequence of input values to be applied to the
circuit we are testing. It turns out that we can use VHDL to write the
testbench program, which is convenient, but can be a little confusing,
since the use of VHDL for testbench programming is distinctly different
from the use of VHDL for specifying circuits.

At this point, it makes sense to discuss a little bit of the history of
VHDL. When hardware description languages like VHDL were first
developed, they were intended primarily as modeling and simulation

Jonathan Turner

23

tools, to be used in the early stages of a hardware design project, before
the development of a detailed design, which was typically done in the
form of a schematic diagram. Consequently, the semantics of VHDL was
specified with reference to a sequential circuit simulation. Only later, did
CAD tool developers start creating circuit synthesizers that used VHDL as
a circuit specification language. When one is using VHDL for synthesis, it
makes much more sense to think about the VHDL language statements as
specifying a circuit, rather than trying to understand them in terms of a
sequential simulation. Many books on VHDL do describe the semantics of
the language by reference to a simulation, but this makes it much more
difficult for students (and even experienced computer engineers) to
understand the circuit synthesis process and how to use the language
effectively. This is why, in this book we emphasize the correspondence
between language statements and circuits as directly as we can.

However, when discussing VHDL testbenches, we have to
acknowledge the other side of VHDL, since in this context, the language is
used not to specify a circuit, but to create a program, much like the
programs we create in other languages. Because we are using VHDL for
these different purposes, the way we use it and the interpretation of the
language statements is a little bit different in the two contexts. It’s
important to keep this in mind as we look at how we can use the language
to create testbenches. Now, let’s take a look at a testbench for the
calculator simulation. We’ll start with the entity declaration.
entity testit1_vhd is end testit1_vhd;

Note that there is no port specification here, as the testbench has no inputs
and outputs. So, the entity declaration just specifies the name of the entity.
Here is the start of the architecture.
architecture a1 of testit1_vhd is
component calculator port(
 clk : in std_logic;
 clear, load, add : in std_logic;

Designing Digital Circuits Using VHDL©

 24

 dIn : in std_logic_vector(7 downto 0);
 result : out std_logic_vector(7 downto 0));
end component;

This is a component declaration and it specifies the interface to the
calculator component. This contains the same information that is present
in the entity declaration for the calculator, but VHDL requires that every
architecture include component declarations for all entities that they use.
This makes the architecture more self-contained, making it easier for
readers to understand the relationships among different parts of a
complex design. Moving on, we have a series of signal declarations that
include initializers that assign initial values to the testbench’s internal
signals.
signal clk: std_logic := '0';
signal clear: std_logic := '0';
signal load: std_logic := '0';
signal add: std_logic := '0';
signal dIn: std_logic_vector(7 downto 0)
 := (others=>'0');
signal result: std_logic_vector(7 downto 0);

Let’s move onto the body of the architecture.
begin
 uut: calculator port map(clk, clear, load,
 add, dIn, result);

The two lines following the begin contain a component instantiation
statement. Its function is to instantiate a copy of the calculator circuit and
connect the inputs and outputs of the calculator circuit to the testbench’s
local signals, clk, clear, load, add, dIn and result. Note that it’s not
necessary to use the same names for the local signals that one uses within
the calculator circuit, but it is common to do so, as it reduces opportunities
to make mistakes. The port map portion of the component instantiation
statement lists the signals in the order that they are listed in the
component declaration (and the entity declaration). There is an alternative
way to write this, using explicitly named signals.
uut: calculator port map(clk=>clk, clear=>clear,

Jonathan Turner

25

 load=>load, add=>add,
dIn=>dIn, result=>result);

Here, the notation x=>y means that the component’s signal x is equated to
the local signal y. When we specify the port map in this way, the order in
which the signal pairs are listed does not matter. Note also that the port
instantiation statement starts with a label uut. This label is used by the
simulator to identify this particular instantiation of the component. It is
common to refer to the component being tested by a testbench as the unit
under test, and this is what the label uut stands for. Now, let’s move onto
consider the first of two processes in the testbench.
 process begin -- clock process for clk
 clk_loop: loop
 clk <= '0'; wait for 10 ns;
 clk <= '1'; wait for 10 ns;
 end loop clk_loop;
 end process;

This process specifies the clock signal clk, that controls the timing of
operations within the calculator circuit. Note that it consists of an infinite
loop in which clk alternates between high and low states, with a
transition every 10 ns. The wait statements provide the delays needed to
create the desired timing relationship. Now, let’s look at the process that
creates the other input signals to the calculator.
 tb: process begin
 clear <= '1'; load <= '1'; add <= '1';
 dIn <= x"ff"; wait for 20 ns;
 clear <= '0'; load <= '1'; add <= '0';
 dIn <= x"55"; wait for 20 ns;
 clear <= '0'; load <= '1'; add <= '1';
 dIn <= x"aa"; wait for 20 ns;
 clear <= '0'; load <= '0'; add <= '1';
 dIn <= x"55"; wait for 20 ns;

Designing Digital Circuits Using VHDL©

 26

 ... -- omitting additional input vectors
 clear <= '0'; load <= '0'; add <= '1';
 dIn <= x"59"; wait for 20 ns;
 wait for 20 ns;

 assert (false)
 report "Simulation ended normally."
 severity failure;
 end process;
end;

The first pair of lines in the process specifies values for all the inputs to the
calculator, and then the wait statement creates a pause of 20 ns before
going onto the next set of assignments. So, each of pair of lines specifies
one of the set of input values that we can observe in the waveform display
that we saw at the start of this chapter. Notice that the two processes
operate independently of one another, each generating its own set of
signals. The pattern we see here, with one process for the clock, and
another for the other inputs, is a very common one.

At the end of the second process, there is an assert statement. This is
used to force the simulation to terminate. In general, an assert statement
starts with an expression that evaluates to true-or-false. We typically use
assert statements, as part of a circuit verification strategy, to state some
condition that we expect to be true. Simulators evaluate these expressions
and if they are false, display a message and optionally terminate the
simulation. In particular, the simulation fails if the severity is specified
to be failure. In this case, we are just using the assertion mechanism as
a way of forcing the testbench to terminate, and this is stated explicitly in
the message provided in the assert statement.

We do not discuss the specifics of individual simulation tools here, but
there are some general things you should keep in mind when using
simulation to verify a circuit. First, think carefully about what inputs are
needed to exercise the functionality of the circuit. It’s important to be as
thorough as you reasonably can, without going overboard. In the
calculator circuit, for example, we tested all the various control operations

Jonathan Turner

27

and went through a handful of different addition operations. We made no
attempt to test all pairs of operands for the addition operation, since the
circuit that implements the addition operation is provided by the VHDL
language system, and we can safely assume that it’s correct. As we study
more complex circuits in later chapters, we will provide some additional
pointers on how to use simulations effectively.

Designing Digital Circuits Using VHDL©

 28

4. Prototyping Circuits with an FPGA

In this chapter, we discuss some of the issues that arise when prototyping
digital circuits using a Field Programmable Gate Array. FPGAs are
devices that can be configured to implement a wide variety of digital
circuits. We won’t discuss how FPGAs work in this chapter, but we will
see how we can use them to for prototyping and testing. To make the
discussion concrete, we will show how we can prototype and test our
simple calculator circuit from Chapter 1, using a prototyping board made
by Digilent, which is shown below.

This board contains a Xilinx Spartan-3 FPGA and we’ll refer to the board
as the S3 board for the remainder of this chapter. In addition to the FPGA,
the S3 board has four push buttons and eight slide switches, that can be
used to provide inputs to the FPGA circuit, plus eight Light Emitting
Diodes (LED) and a four digit numeric display that can be used for

Jonathan Turner

29

output. These external devices are wired to specific physical pins on the
FPGA. By specifying connections between those pins and the inputs and
outputs of our circuit, we can effectively connect those pins to our circuit.
For our calculator, we will use the push buttons, slide switches and LEDs,
as illustrated below.

As shown in the picture, we’ll connect the slide switches to the data input
signal and three of the push buttons to the three control inputs. The
external signal mclk is a 50 MHz clock signal that comes from a clock
generator circuit on the board and is connected to one of the input pins of
the FPGA. We’ll connect the calculator’s result output to the LEDs on
the board.

To establish the connections between the external pins and our
calculator circuit, we will embed the calculator circuit in a top level circuit
whose inputs and outputs are the external signals we’ll be using. Here is
the entity declaration of that top level circuit.
entity top is port(
 mclk: in STD_LOGIC;
 btn: in std_logic_vector(3 downto 0);
 swt : in std_logic_vector(7 downto 0);
 led : out std_logic_vector(7 downto 0));
end top;

Designing Digital Circuits Using VHDL©

 30

We will embed a copy of our calculator circuit within top, by using
structural VHDL, just as we did with our simulation testbench in the last
chapter.

architecture topArch of top is
component calculator port (
 clk: in std_logic;
 clear, load, add: in std_logic;
 dIn: in std_logic_vector(7 downto 0);
 result: out std_logic_vector(7 downto 0));
end component;
signal clear, load, add: std_logic;
signal dIn: std_logic_vector(7 downto 0);
signal result: std_logic_vector(7 downto 0);
begin
 clear <= btn(3); load <= btn(2); add <= btn(1);
 dIn <= swt; led <= result;
 calc: calculator port map(mclk,clear,load,
 add,dIn,result);
end topArch;

Note that the architecture must include a component declaration for the
calculator, and that we define a set of appropriately named internal
signals which we associate with the corresponding external signals. The
component instantiation statement identifies these signals with the
appropriate inputs and outputs of the calculator. Note that these local
signals are not strictly necessary, but they do make the purpose of the
various signals a bit more obvious.

Now, let’s simulate this version of our circuit to verify that it still works
as expected.

Jonathan Turner

31

Notice that the three buttons we are using are shown in the top line of the
waveform display, with btn(3) on the left, followed by btn(2) and
btn(1). The corresponding internal control signals (clear, load, add)
are shown below the button signals on separate lines. Note that when we
prototype the circuit on the S3 board, buttons will be held down for many
clock ticks, since a clock tick is just 20 ns long and even a very quick
button press will last 100 ms or more. To produce a similar effect, our
testbench for the simulation specifies that the button signals be held for
several clock ticks, each time one is pressed. This can be seen clearly in the
waveform display.

The first part of the simulation seems to be working correctly, but when
we come to the portion that tests the addition operation, we observe
something unexpected. The single button press results in several addition
operations taking place, not just one. This happens because the calculator
performs a new operation on every clock tick. So, if the add signal is held
high for several clock ticks in a row, the calculator performs an addition
on every clock tick. But this means that when we try to test the circuit on

Designing Digital Circuits Using VHDL©

 32

the S3 board, every button press will cause millions of addition operations
to be performed, which is clearly not what we want.

To get the desired behavior, we’re going to need to modify the circuit.
In particular, we’re going to need to generate an internal signal that goes
high for a single clock tick every time the button is pressed. This can be
done by detecting a 0-1 transition on the button signal and using that
transition to create the desired pulse. We can do this by modifying the
architecture of our top circuit.
architecture topArch of top is
component calculator ... end component;
signal clear, load, add: std_logic;
signal dIn: std_logic_vector(7 downto 0);
signal result: std_logic_vector(7 downto 0);
signal prevBtn: std_logic_vector(3 downto 0);
begin
 -- generate internal signals for button pushes
 process (mclk) begin
 if rising_edge(mclk) then
 prevBtn <= btn;
 end if;
 end process;
 clear <= btn(3) and (not prevBtn(3));
 load <= btn(2) and (not prevBtn(2));
 add <= btn(1) and (not prevBtn(1));
 dIn <= swt; led <= result;
 calc: calculator port map(mclk, clear, load,
 add, dIn, result);
end topArch;

The signal prevBtn is used to create a delayed version of the button
inputs. The process does this, by assigning the btn to prevBtn within the
scope of a synchronization condition. Recall that this implies that
prevBtn will be implemented using a clocked register, whose input is
connected to btn. Following the process, we see that each of the control
signals is generated using one of the btn inputs together with the
corresponding value of prevBtn. This causes the control signal to be high

Jonathan Turner

33

for one clock tick whenever there is a 0-to-1 transition on btn. Note that
we could have left the clear and load inputs alone, since it does no real
harm if these operations are performed multiple times per button press.
However, for consistency, we have chosen to implement all the control
signals in the same way.

If we re-run the simulation with our modified top circuit, we’ll observe
that each button press does in fact cause the corresponding control signal
to be high for one clock tick, and as a result we get a single addition
operation every time we press the button. We’re now ready to try out our
circuit on the S3 board. In order to do this, we must create an FPGA bitfile
containing the information needed to configure the FPGA so that it
implements our calculator circuit. The bitfile must then be downloaded to
the FPGA using a special programming cable that is provided for this
purpose. We will not discuss the details of how this is done, since those
details depend on the specific CAD tool set that you are using.

Now, when we configure the FPGA to implement our circuit, we will
observe something curious. When we use the buttons and switches on the
board to test the various operations, we observe that while the clear and
load operations work correctly, the add operation works correctly only
some of the time. In particular, it appears that some of our button presses
are producing multiple addition operations. This seems a bit strange.
What’s going on? The answer to this question has to do with the fact that
the mechanical buttons on the S3 board vibrate as we press and release
them, and these tiny vibrations can cause the button signals to make
several 0-1 transitions every time we press down on the button. Most
mechanical buttons behave this way, so we need to make some additional
changes to our circuit to deal with this. Specifically, we need to add a
debouncer and connect the buttons to the internal logic through this
debouncer.

Designing Digital Circuits Using VHDL©

 34

A debouncer filters out the fluctuations cause by the mechanical
vibrations of a button. It does this by delaying the response to a transition
until the button signal has been stable for a long enough time that we can
be confident that the button is no longer bouncing. Here is the entity
declaration for the debouncer. Its inputs are the clock and the btn signals.
Its output dBtn is a debounced version of btn.

Jonathan Turner

35

entity debouncer is port(
 clk: in std_logic;
 btn: in std_logic_vector(3 downto 0);
 dBtn: out std_logic_vector(3 downto 0));
end debouncer;

Now, let’s look at the architecture.
architecture debArch of debouncer is
signal prevBtn: std_logic_vector(3 downto 0);
signal count: std_logic_vector(19 downto 0);
begin
 process(clk) begin
 if rising_edge(clk) then
 prevBtn <= btn;
 if prevBtn /= btn then
 count <= (others => '1');
 elsif count /= (count'range => '0') then
 count <= count - 1;
 else dBtn <= btn;
 end if;
 end if;
 end process;
end debArch;

The architecture includes two internal signals prevBtn and count.
PrevBtn is used to create a delayed version of btn and count is used to
determine when the btn signals have been stable for a long enough time
that it’s safe to allow them to propagate to the output, dBtn. Notice that
every time btn changes, count is set to all 1’s. For every clock tick when
btn does not change and count is not equal to zero, count is
decremented by 1. On any clock tick where count is equal to zero, the
value of btn is assigned to dBtn, meaning that the register that
implements dBtn is loaded from btn. Here is a diagram of a circuit that
implements the VHDL specification.

Designing Digital Circuits Using VHDL©

 36

Because the count signal is defined to be 20 bits long, the debouncer will
count down for 220 clock ticks following a transition on btn, before
reflecting that transition at the outputs. Since 220 is slightly more than one
million and since the period of the clock on the S3 board is 20 ns, this
means that the circuit implements a delay of just over 20 ms, which is long
enough to filter out any spurious transitions due to vibration of the button
mechanism.

 There is one detail of the VHDL code that bears further explanation.
The line
 elsif count /= (count'range => '0') then

tests if count is equal to zero. The right side of the inequality includes the
expression count'range. In this expression, range is an attribute of the
signal count. Specifically, it refers to the range of indices in the signal
vector, so here, count'range is 19 downto 0. We could have written
 elsif count /= (19 downto 0 => '0') then

Jonathan Turner

37

but we chose to write it the way we did to make the expression
independent of the actual length of count. In general, it’s a good practice
to make our VHDL code independent of the actual lengths of signal
vectors, but in this case we had a very specific reason for doing so. That
reason has to do with simulating the circuit. If we were to simulate the
debouncer in order to verify its operation, we would have to wait for
more than a million clock cycles to observe the propagation of signals
through the debouncer. To avoid this, we can modify the circuit for the
purposes of simulation, by reducing the length of count from 20 bits to 2
or 3 bits. Since the architecture is independent of the length of count, the
only thing we need to change in order to do this, is the declaration of
count.

Here’s a new version of our top circuit that uses the deBouncer and
the calculator circuits.
architecture topArch of top is
component calculator ... end component;
component debouncer ... end component;
signal clear, load, add: std_logic;
signal dIn: std_logic_vector(7 downto 0);
signal result: std_logic_vector(7 downto 0);
signal dBtn, prevDB: std_logic_vector(3 downto 0);
begin
 -- debounce buttons
 dbnc: debouncer port map(mclk, btn, dBtn);
 -- generate pulses when debounced signals
 -- go high
 process (mclk) begin
 if rising_edge(mclk) then
 prevDB <= dBtn;
 end if;
 end process;
 clear <= dBtn(3) and (not prevDB(3));

Designing Digital Circuits Using VHDL©

 38

 load <= dBtn(2) and (not prevDB(2));
 add <= dBtn(1) and (not prevDB(1));

 -- connect signals to the calculator
 dIn <= swt; led <= result;
 calc: calculator port map(mclk, clear, load,
 add, dIn, result);
end topArch;

The internal signal dBtn is the debounced version of btn. The top circuit
creates a delayed version of dBtn (called prevDB) and uses it to generate
the internal control signals. These are then connected to the calculator
circuit. Now, let’s look at a simulation of this circuit.

Before we look closely at the actual simulation output, it worth taking a
few moments to notice a few things about the waveform display. At the
left, where the signal names are listed, the signals have been organized
into groups, with labels added to identify each related group of signals.

Jonathan Turner

39

Most circuit simulators allow you to order the signals in the way that’s
most convenient for you, and to add labels. It’s worth taking the time
when doing a simulation, to organize the symbols in some logical fashion
and add labels to help you keep track of things. Once you have done this
one time, the simulator will typically allow you to save the layout of your
waveform display to a file, so that you can re-use it on subsequent
simulation runs. When testing a complex circuit, we may need to make a
sequence of modifications to our circuit, in order to get it to work
correctly. Spending a little time getting your simulation set up properly at
the start, can save you a lot of time later, as you go through the simulate-
modify-and-simulate-again cycle.

Now, let’s take a closer look at the actual signals. The group of signals
labeled “External Signals” are just the original button signals (notice how
they change when the btn signals change). We’ve relabeled them in the
simulator to make it easier to see the connection with the internal control
signals that appear below. For this simulation, we have reduced the
debouncer’s counter from 20 bits to 2 bits. This means that the btn signals
propagate through the debouncer after they have been stable for four
clock ticks. Notice that changes to the btn signals that are not stable for
four ticks, never get propagated. Looking ahead, we can see that all the
control operations, including the add operation, work as expected.

Of course, our previous simulation worked as expected too, and we
only discovered the need for the debouncer, when we tried to check out
the circuit on the S3 board. So, in order to verify that we really have it
right, we need to generate a bitfile for the modified circuit and download
it to the S3 board. Before doing this, we need to change the length of the
count signal in the deBouncer from 2 bits back to 20 bits. If we do this,
and load the resulting circuit on the S3 board, we will find that our
calculator now does work correctly, with every button press triggering
one (and only one) operation.

Designing Digital Circuits Using VHDL©

 40

Jonathan Turner

41

5. Additional Language Features

In this chapter, we introduce a number of additional features of the VHDL
language.

More Signal Assignments

As we have seen, we can define any combinational logic circuit using just
simple signal assignments, but VHDL also provides two additional types
of assignments that often allow us to express a circuit design in a more
convenient way. The first of these is the conditional signal assignment,
which allows us to make the value assigned to a signal dependent on a
series of conditions. Here’s an example.
c <= x when a /= b else
 y when a = '1' else
 z;

This assignment can be implemented by the following circuit.

Designing Digital Circuits Using VHDL©

 42

Note the similarity between this and the circuit that implements the if-
then-elsif statement in the calculator circuit from Chapter 2. The
conditional signal assignment can have any number of when-else
clauses, and each successive clause can be implemented using another
multiplexor. We can also use the conditional signal assignments with
signal vectors. If A, B and C are all 8 bit signal vectors, then the assignment
D <= B when A > B else
 B+C when A < B else
 C;

is equivalent to the circuit

Here the labeled blocks designate combinational sub-circuits that
implement an inequality comparison function and an addition function.

There is one more type of signal assignment in VHDL called the selected
signal assignment. For example, if ''x'' is a signal vector with 2 bits, then
with x select
 a <= '0' when "00",
 '1' when "01" | "10",
 b when others;

specifies the circuit

Jonathan Turner

43

This diagram includes a 4:1 multiplexor, which has 4 data inputs and a 2
bit control input. It’s output is equal to the data input whose index is
specified by the control value. That is, if the value on the control input is
10, the output is equal to the value on data input 2. VHDL allows the
conditional and selected signal assignments to be used only outside of
process blocks.

Case Statement

VHDL provides a case statement that is useful for specifying different
results based on the value of a single signal. For example,
architecture a1 of foo is begin
 process(c,d,e) begin
 b <= '1'; -- provide default value for b
 case e is
 when "00" => a <= c; b <= d;
 when "01" => a <= d; b <= c;
 when "10" => a <= c xor d;
 when others => a <= '0';
 end case;
 end process;
end a1;
This circuit can be implemented using decoder that converts the two bit

signal e into four 1 bit signals. These can then be used to select which
values propagate to the outputs a, and b. We could have also written this

Designing Digital Circuits Using VHDL©

 44

using an if-elsif statement, but the resulting circuit would implemented
using a series of 2:1 multiplexors (as would be typical), it would be slower
than the one synthesized for the case-statement.

For Loops

VHDL provides a for-loop which is similar to the looping constructs in
sequential programming languages. We can use it to define repetitive
circuits, like the adder circuit shown below.

Jonathan Turner

45

entity adder is
 port(A, B: in std_logic_vector(15 downto 0);
 Ci: in std_logic;
 S: out std_logic_vector(15 downto 0);
 Co: out std_logic);
end adder;
architecture a1 of adder is
signal C: std_logic_vector(16 downto 0);
begin
 process (A,B,C,Ci) begin
 C(0) <= Ci;
 for i in 0 to 15 loop
 S(i) <= A(i) xor B(i) xor C(i);
 C(i+1) <= (A(i) and B(i)) or
 ((A(i) xor B(i)) and C(i));
 end loop;
 Co <= C(wordSize);
 end process;
end a1;

Note that the for-loop does not imply the repetitive execution of program
statements. Rather, it signifies the repeated instantiation of digital circuits.
The example for-loop is equivalent to wordSize pairs of assignments,
each of which specifies the circuitry for one bit position of the adder.

You might wonder why we used a logic vector for the signal C that
implements the carry signals between successive bit positions. Wouldn’t it
be simpler to write
architecture a1 of adder is
signal C: std_logic;
begin
 process (A,B,C,Ci) begin
 C <= Ci;
 for i in 0 to 15 loop
 S(i) <= A(i) xor B(i) xor C;

Designing Digital Circuits Using VHDL©

 46

 C <= (A(i) and B(i)) or
 ((A(i) xor B(i)) and C);
 end loop;
 Co <= C;
 end process;
end a1;

While this would make perfect sense in a sequential programming
language, it does not have the intended meaning in VHDL, since here,
we’re specifying circuits, not sequential execution. The signal C can only
be ‘wired’ in one way. It cannot be re-defined by different expressions at
different times. Consequently, the circuit defined by this specification will
not behave as intended.

It’s instructive to look at the circuit that would be produced by this
second VHDL specification. Assume for the moment that we’ve modified
the VHDL to implement a 3 bit adder, instead of a 16 bit adder; then the
for-loop would be equivalent to the following sequence of statements.
S(0) <= A(0) xor B(0) xor C;
C <= (A(0) and B(0)) or ((A(0) xor B(0)) and C);
S(1) <= A(1) xor B(1) xor C;
C <= (A(1) and B(1)) or ((A(1) xor B(1)) and C);
S(0) <= A(2) xor B(2) xor C;
C <= (A(2) and B(2)) or ((A(2) xor B(2)) and C);

Note that there are three assignments to the signal C, but only one of these
can be used to actually implement the circuit for C. While VHDL allows us
to write these three assignments for C (when inside a process block), all
but the last of them are ignored. What this means is that the above
sequence of statements is actually equivalent to this sequence.
S(0) <= A(0) xor B(0) xor C;
S(1) <= A(1) xor B(1) xor C;
S(2) <= A(2) xor B(2) xor C;
C <= (A(2) and B(2)) or ((A(2) xor B(2)) and C);

Now, if these were assignments in a sequential programming language,
you might object that C is not defined in the first three assignments. But
again, the semantics of assignment in VHDL are not the same as the

Jonathan Turner

47

semantics of sequential execution. In VHDL, the assignments simply
define how the circuit elements are wired together. It’s also worth
observing that the circuit defined by these statements contains a cycle,
since C depends on itself. We will see later that there is another way to
write the for-loop using a VHDL variable, that does not require a vector of
signals to implement the carries. However, we will defer the discussion of
variables for now.

User-Defined Types

Like conventional programming languages, VHDL allows users to define their
own types. To start with, let’s look at how constants are defined in VHDL.
constant wordSize: integer := 16;

This declaration declares wordSize to be an integer constant with a value of 16.
Given such a constant declaration, we can write
signal dataReg: std_logic_vector(wordSize-1 downto

0);

By associating a name with a constant value, we can make it easier for someone
else reading our VHDL code to understand our intent. Moreover, if we use
wordSize consistently in our code, we can easily modify our circuit
specification to accommodate a different value for wordSize at some point in
the future. Instead of changing possibly dozens of individual numerical constants,
we can just change a single constant declaration.

VHDL also allows us to declare new signal types. For example, we can define
a register type using the declaration
type regType is std_logic_vector(wordSize-1 downto

0);
and then use it to define signals of this type.
signal regA, regB: regType;

Designing Digital Circuits Using VHDL©

 48

VHDL also supports enumeration types. The declaration
type color is (red, green, blue, black, white);

declares color to be a type that takes on five named values. Signals of type
color might be implemented as a three bit vector, with specific bit
combinations selected for the different values. VHDL also allows one to
specify subtypes of an enumeration. For example,
subtype primary is color range red to blue;

defines primary to take on the values red, green and blue. With these
definitions, we can define the following signals
signal c1, c2, c3: color;
signal p: primary

and write statements like the following.
c1 <= red;
p <= green;
if c2 /= green then
 c3 <= p;
else
 c3 <= blue;
 p <= blue;
end;

The language allows assignments from a signal of type primary to a
signal of type color, but not assignments from color to primary.

VHDL also allows us to define more complex signal types. For
example, the declarations
type regFileType is array(0 to 15) of regType;
signal reg: regFileType;

defines regFileType to be an array of items, each of type regType, and
declares reg to be a signal of this type. Given these declarations, we can
write
reg(2) <= x"3fe5";
reg(3) <= reg(5) + reg(7);
reg(8 to 15) <= (9 => x"abcd", 11 => x"ffff",
 others => x"0000");

Jonathan Turner

49

reg(4)(2) <= '1';
Note that we can think of the signal reg as defining a two dimensional
array. VHDL allows multidimensional arrays to be declared more directly,
but unfortunately, most circuit synthesizers cannot generate circuits based
on multidimensional array declarations, although they can generate
circuits based on the declarations given above. This situation may well
change in the future, but to be consistent with the current state of circuit
synthesis tools, we limit ourselves to one-dimensional arrays here.

A signal of type regFileType may be implemented in one of several
different ways, depending on how it is used. The most general
implementation is a collection of separate registers, each of which is
implemented using flip flops. We’ll discuss later how synthesizers can
sometimes implement signals of this type using a Random Access
Memory (RAM) or Read-Only Memory (ROM).

 Type declarations can also be used to declare composite signals that
combine components of different types. For example
type item is record
 dp: std_logic;
 key, value: regType;
end record item;
signal i1, i2, i3: item;

declares signals of type item to contain a single bit signal called dp, and
two signals, key and value, of type regType. Given these declarations
we can write
i1 <= (dp => '1', key => x"0000", value=> x"ffff");
i2.value <= i1.key(15 downto 8) & x"3d"
i3 <= i1;

We can also define a new type that is an array of type item.
type itemVecTyp is array(0 to 15) of item;
signal ivec: itemVecTyp;

Designing Digital Circuits Using VHDL©

 50

allowing us to write statements like
ivec(1) <= ivec(4); ivec(2).key <= ivec(3).value

Later, we’ll see examples of how record types can be used effectively in
complex circuits to organize related data elements and make circuit
specifications that are easier to understand.

Signal Attributes

In the last chapter, we saw an example of the use of the range attribute of
a signal. In general, if x is a std_logic_vector, then x'range is the
range of indexes for which x was was defined. For example, the
declaration
signal x std_logic_vector(0 to 5);
signal y std_logic_vector(8 to 3);

means that x'range is 0 to 5. VHDL defines a number of other
attributes for signal vectors. In particular y'left refers to the “left
endpoint” of the index range for y (8, in this case), while y'right refers
to the right endpoint (3). Similarly y'low refers to the smaller of the two
index values (3) defining the range, while y'high refers to the larger
value (8); x'length is the number of distinct indexes (6) and
x'ascending is true if the index range was defined so that the indices
increase in value from left to right (true for x, false for y).

Structural VHDL

Structural VHDL refers to a style of VHDL coding in which circuits are
defined in a very explicit way by specifying the connections among
different components. The key element of structural VHDL is the
component instantiation statement that we introduced in Chapter 2.
Structural VHDL is best used sparingly to connect larger circuit elements
that are themselves defined using processes and the various high level
control statements that we have discussed. Our use of structural VHDL in
Chapter 3, to combine the calculator circuit with the debouncer is typical

Jonathan Turner

51

of this kind of usage. However, structural VHDL can be used to construct
smaller sub-circuits as well. We can illustrate this by constructing a 4 bit
adder using the full adder module defined earlier as a building block.
entity adder4 is port(
 A, B: in std_logic_vector(3 downto 0);
 Ci: in std_logic;
 S: out std_logic_vector(3 downto 0);
 Co: out std_logic);
end adder4;
architecture a1 of adder4 is
component fullAdder port(
 A, B, Ci: in std_logic;
 S, Co: out std_logic);
end component;
signal C: std_logic_vector(3 downto 1);
begin
 b0:fullAdder port map(A(0),B(0),Ci,S(0),C(1));
 b1:fullAdder port map(A(1),B(1),C(1),S(1),C(2));
 b2:fullAdder port map(A(2),B(2),C(2),S(2),C(3));
 b3:fullAdder port map(A(3),B(3),C(3),S(3),Co);
end a1;

This architecture instantiates four copies of the full adder component and
specifies how the copies are connected to the inputs and outputs of the top
level circuit and how they are connected to each other through the carry
signal. Each component instantiation statement has a label that is used to
distinguish the components from one another. The port map portion of
the statements uses positional association of the ports. That is, the position
of a signal in the port map list determines which signal in the component
declaration it is associated with. VHDL also allows named association. For
example, we could write
b0: fullAdder port map(A=>A(0),B=>B(0),S=>S(0),
 Ci=>Ci,C0=>C(1));

Designing Digital Circuits Using VHDL©

 52

Note that if we use named association, the order in which the arguments
appear does not matter. For larger circuit blocks with many inputs and
outputs, named association is preferred.

Structural VHDL also supports iterative definitions so that we need not
write a whole series of similar component instantiation statements. This
allows us to write a 16 bit adder as
architecture a1 of adder16 is
component fullAdder port(
 A, B, Ci: in std_logic;
 S, Co: out std_logic);
end component;
signal C: std_logic_vector(16 downto 0);
begin
 C(0) <= Ci;
 bg:for i in 0 to 15 generate
 b:fulladder
 port map(A(i),B(i),C(i),S(i),C(i+1));
 end generate;
 Co <= C(16);
end a1;

Observe that in this version, we've declared C to be a 17 bit signal, and
equated Ci with C(0) and Co with C(16). This avoids the need for
separate component instantiation statements for the first and last bits of
the adder. Note that the labels on the for-generate statement and on the
component instantiation statement are both required.

We note that it is possible to define circuits entirely using structural
VHDL, with AND gates, OR gates and inverters as basic primitives used
to construct larger components. However, this style of VHDL is tedious,
error prone and produces circuits that are difficult for others to
understand. Essentially, this amounts to using VHDL as a textual way of
specifying a schematic diagram, which defeats the purpose of using a tool
like VHDL in the first place. If one wants to design at the schematic level,
it makes more sense to use a graphical editor, rather than a language like
VHDL. Having said that, structural VHDL does give the designer a great

Jonathan Turner

53

deal of control over the circuit that is generated by a circuit synthesizer,
and there are times when it may make sense to use it for small parts of a
design that merit special treatment.

The Separation Principle

It’s very easy to allow our experience with sequential programming
languages to lead us to misunderstand the meaning of a VHDL circuit
specification. This is why we’ve been highlighting the differences between
the two, in all of our discussions of the language. The most important
single thing to keep in mind is that VHDL is used to define connections
among circuit components, not the sequential execution of program
statements. There is a useful conceptual tool that you can often use to help
you understand the circuitry that is being defined by a given set of
statements. Consider the following code fragment that defines several
signals.
x <= x"0000";
y <= x"abcd";
if a = b then
 x <= y; z <= b;
elsif a > c then
 y <= b; z <= a;
else
 z <= x + y;
end if;

Here is an equivalent code fragment in which the assignments to x, y and
z are separated from each other.
-- code segment defining x
x <= x"0000";
if a = b then x <= y; end if;
-- code segment defining y

Designing Digital Circuits Using VHDL©

 54

y <= x"abcd";
if a /= b and a > c then y <= b; end if;
-- code segment defining z
if a = b then z <= b;
elsif a > c then z <= a;
else z <= x + y;
end if;

This is an example of the separation principle, which states that we can
separate the assignments to different signals without affecting the
meaning of the VHDL (where the ‘meaning’ is the circuit that implements
the VHDL). Note that the three code segments above can be re-arranged
in any order, without changing the meaning, although within each code
segment, the order of statements does matter. For example if we swap the
two statements that assign values to x, we are defining a different circuit
than is defined by the original version.

Underlying the separation principle is the fact that a VHDL circuit
specification is ultimately just a way to define signals, in terms of other
signals using logic equations. Because VHDL specifies the “wiring” of the
circuit, rather than sequential execution, the order in which different
signals are defined does not matter, any more than the way that we draw
the components in a schematic diagram does; so long as we define the
same connections among components, the placement of the symbols for
those components in a drawing doesn’t matter. In principle, we could
specify each signal using a single simple signal assignment, but higher
level constructs like if-statements, case statements and for-loops allow us
to state our intentions more concisely, and to organize the various
elements of the circuit in a way that makes the overall design easier to
comprehend. However we express the design, the language statements
must eventually be reduced to a set of gates and the wires that connect
them.

Jonathan Turner

55

6. Digital Circuit Elements

When we design circuits using VHDL, we are specifying a circuit
consisting of elementary components like gates and flip flops that are
connected to one another as needed to implement our circuit specification.
In this chapter, we take a closer look at these basic building blocks, as well
as some larger components that can be constructed using the basic
building blocks.

Basic components

We typically think of components like AND gates. OR gates and inverters
as the basic elements of a digital logic circuit, but it turns out that gates are
actually constructed from even more basic elements called transistors.
Transistors can be used essentially as on-off switches that can connect a
gate output to a high voltage (to produce a logic 1) or to a low voltage to
produce a logic 0. In CMOS circuit technology (which is the dominant
technology in widespread use today), we can implement an inverter with
two transistors, and a 2 input AND gate (or an OR gate) with six
transistors. Gates with more than two inputs can be constructed using
additional transistors, with a three input gate using eight transistors, a
four input gate using ten transistors, and so on.

A NAND gate is an AND gate in which the output has been inverted.
Similarly, a NOR gate is an OR gate in which the output has been
inverted. The symbols for NAND and NOR gates are shown below.

Designing Digital Circuits Using VHDL©

 56

You might wonder, why we would bother to define these alternate types
of gates, but it turns out that in CMOS technology, NAND and NOR gates
are actually simpler to construct than AND and OR gates. We can
implement a 2 input NAND gate using just four transistors and we
actually implement an AND gate by adding an inverter to the output of a
NAND.

The exclusive-or operation occurs frequently enough in circuits, that it’s
convenient to define a special gate symbol for it, as we have seen in earlier
chapters. An XOR gate can be implemented using either of the circuits
shown below.

The one on the left corresponds directly to the definition of the exclusive-
or operation, but the one on the right is significantly more efficient, using
just 16 transistors, vs. 22 for the one on the left.

FPGAs implement logic using configurable components called lookup
tables (LUT). A typical LUT has four inputs and can be configured to
implement any 4 input logic function. A combinational circuit with more
than four inputs can be implemented using several LUTs, appropriately
configured and interconnected. An example is shown below.

Jonathan Turner

57

As we have seen in earlier chapters, flip flops and latches can be used to
store data in digital circuits. An edge-triggered D flip flop can be
implemented using a pair of D-latches, as illustrated below.

When the clock input is low, the first latch is in the “transparent” state, so
its output follows the input signal. When the clock makes its transition
from low to high, the first latch stores the value that was on its input at the
time of the transition and the second latch becomes transparent, reflecting
the value that was stored by the first latch, on its output. When the clock
goes low again, the second latch becomes opaque, so it will continue to
hold this value, ignoring changes on its input until the next clock
transition. Thus, the flip flop captures the input state at the time of the
rising clock transition, but ignores changes on the input at other times. It’s
worth noting that if we omit the first inverter on the clock input, we get a
flip flop that is triggered by the falling clock edge, rather than the rising
edge.

Latches can be implemented using gates, as shown below.

Designing Digital Circuits Using VHDL©

 58

The cross-coupled gates with the single inverted input implement the
storage function of the latch. When the control input is high, the latch is
transparent. That is, a 1 on the D input will appear as a 1 on the Q output,
and a 0 on the D input will appear as a 0 on the Q output. When the
control input goes from high to low, the pair of OR gates become isolated
from the D input, so they behave like a pair of cross-coupled inverters.
This ensures that the Q output remains unchanged until the control input
goes high again. If we replace all of the gates in the above circuit with
NAND gates, we get a circuit that behaves exactly the same way.
Consequently, we can see that a D latch can be implemented with 18
transistors and a D flip flop can be implemented with 40.

Larger building blocks

We have already seen how multiplexors can be used to implement the
logic defined by if statements and selected signal assignments. The output
of the 2:1 mux can be expressed by the logic equation

X = Cʹ′·D0 + C·D1

where C is the control input and D0 and D1 are the two data inputs. Thus
it can be implemented with three gates and an inverter. It can also be
implemented with a single 4 input LUT. We can implement a 4:1 mux
using three 2:1 muxes, or we can implement it directly with gates, as
shown below.

Jonathan Turner

59

this circuit can be generalized to implement muxes with 8, 16 or more
inputs. A demultiplexor performs the inverse function of the mux. It has a
single data input, k control inputs and 2k data outputs. If the value
represented by the control signals is i, then output Di is equal to the data
input, while all other data outputs are 0.

If we remove all the data inputs and the OR-gate from the circuit for
the 4:1 mux above, we get a 2→4 decoder. This circuit has four outputs,
exactly one of which is high at all times. The output that is high is
specified by the binary value on the inputs. We can think of this circuit as
converting a 2 bit binary value to a 4 bit unary value. Larger decoders (say
3→8 or 4→16) can be constructed in a similar way. Decoders can be used
to implement case statements. If the control signal for the case statement is
connected to the inputs of a decoder, its outputs can be used to control the
sub-circuits associated with each of the individual cases.

An encoder implements the inverse function of a decoder. For example,
a 4→2 encoder converts a 4 bit unary input value to a 2 bit binary output
value. That is if input Di is high and the other three inputs are low, the
binary value represented by the outputs will be i. In a priority encoder, the
binary value on the outputs equals the index of the first of the inputs that
is high. A special valid output is also usually provided for a priority
encoder. If any of the encoders data inputs is high, the valid output will be
high; otherwise, it will be low.

An increment circuit takes an n-bit data input and produces an (n+1)-bit
data output that has a numerical value that is one larger than the input
value. An example of a 4 bit incrementer, with an enable (EN) input is
shown below.

Designing Digital Circuits Using VHDL©

 60

When the enable is low, the output is also low, but when the enable is
high, the output is one larger than the input. The series of AND gates that
pass from right to left form the carry-chain for the circuit. The carry into a
given bit position is high, if the enable is high and all lower order bits are
high. When the carry into a given bit is high, the output for that position is
the complement of its input bit. This circuit is referred to as a ripple-carry
incrementer, since the carry must propagate through all bit positions.

Circuit cost/complexity

Because circuits are physical devices, the number of elementary
components in a circuit is directly related its cost. Consequently, we will
often try to find circuit implementations that use as few elementary
components as possible, in order to minimize cost. The most basic
components of a circuit are gates and to allow uniform comparisons of
different circuit designs, we will often restrict ourselves to simple gates,
that is, gates with at most two inputs. If we are implementing circuits
using FPGAs, it typically makes more sense to count LUTs and flip flops,
rather than gates.

Often, we design circuits that have configurable sizes. For example, an
increment circuit with n inputs or a multiplexor with k control inputs and
2k data inputs. In cases like this, we’ll express the circuit cost as a function
of the “size parameter”. So for example, the ripple-carry increment circuit
discussed above requires 2n simple gates to handle n bit data, if we count
the exclusive-or gates as one gate each. This is not exactly accurate, since
an implementation of the XOR is more costly than a single AND or OR

Jonathan Turner

61

gate. To be more precise, we could count each XOR gate as several “gate
equivalents” or count transistors, rather than just gates. While this can
give us more precision, in most situations, the added precision is of
limited value, so we will often rely on simpler methods, such as counting
all gates (including XOR gates) as roughly equivalent.

One of the reasons, we can get away with a bit of sloppiness in our
accounting is that we’re typically more interested in the rate at which our
circuits grow in cost as the size parameter increases. For example, the
ripple-carry increment circuit is particularly attractive because its cost
grows in direct proportion to the number of bits. There are alternate
designs for increment circuits that have a cost that grows in proportion to
n lg n. where lg denotes the base-2 logarithm. Such circuits are more
expensive, but have the advantage of producing output results more
quickly when n gets large.

When implementing a circuit using an FPGA, it makes more sense to
count LUTs than gates. CAD tools will report the number of LUTs used to
implement a given circuit and it’s worth paying close attention to these
numbers, at least in situation where cost is an important consideration. It’s
also worthwhile to be able to estimate the number of LUTs that a given
circuit may require, so that we can get an idea of a circuit’s cost before we
go to the trouble of designing it in detail. Estimating the number of LUTs
needed to implement a given circuit can be tricky and we won’t discuss it
in detail here, but we do note a useful few rules of thumb.

First, since each LUT has just one output, a combinatorial circuit with n
distinct outputs will require at least n LUTs. This implies for example, that
an n input increment circuit requires at least n LUTs. It’s easy to see how
to implement an increment circuit with 2n LUTs (use a LUT for each gate),
but we can do a little better than this by recognizing that each of the first
three outputs is a function of just four inputs, so one gate suffices for each
of these outputs. Also, the carry out of the third bit position is a function

Designing Digital Circuits Using VHDL©

 62

of just four inputs. So, we can implement the first three bits of the
incrementer using 4 LUTs and if we apply this approach repeatedly, we
can implement a k bit increment circuit using 4k LUTs. So, in this case, we
get within 33% of the lower bound on the number of LUTs implied by the
number of outputs.

For circuits with more inputs than outputs, it’s worth noting that a
combinatorial circuit that uses k 4 input LUTs to produce n output signals
can accommodate no more than 3k+n input signals, since each LUT whose
output is not one of the circuit outputs must have its output connected to
the input of another LUT. As a result, a circuit with m inputs and n
outputs requires at least ⎡(n–m)/3⎤ LUTs. So for example, a mux with four
data inputs (total of six inputs and one output) requires a minimum of 2
LUTs and a mux with eight data inputs (plus three control inputs)
requires at least four LUTs. In practice, we need three LUTs to implement
the 4-MUX and seven for the 8-MUX, so the lower bounds can only be
viewed as rough estimates. Still, they provide a simple starting point for
estimating the number of LUTs that a given circuit may require.

Jonathan Turner

63

7. Designing Clocked Sequential Circuits

Clocked sequential circuits store values in flip flops, most often, edge-
triggered D flip flops. VHDL provides a ''synchronization condition'' for
use in if-statements that allows us to specify signals whose values are to
be stored in flip flops or registers of flip flops. Here's an example.

if rising_edge(clk) then x <= a xor b; end if;

The condition in the if-statement is the synchronization condition. The
“scope” of the synchronization condition is the body of the if-statement.
What this means is that assignments to signals within the body of the if
statement are to occur only when the signal clk makes a transition from
low to high. We obtain this behavior in a digital circuit by associating the
signal x with a positive edge-triggered D flip flop, with clk connected to
the clock input and the signal a xor b connected to the D input. Note
that since x is associated with a D-flip flop controlled by the rising edge of
clk, it does not make sense to have other assignments to x with
incompatible synchronization conditions or no synchronization condition
at all. It’s usually most convenient to arrange one’s VHDL specification so
that all assignments to signals whose values are stored in flip flops lie
within the scope of a single if-statement containing the synchronization
condition. In fact, while the language doesn't require this, many circuit
synthesizers cannot handle specifications with more than one
synchronization condition in the same process. For this reason, we adopt

Designing Digital Circuits Using VHDL©

 64

the common convention of using at most one synchronization condition in
the processes used to specify sequential circuits.

Serial Comparator

VHDL makes it easy to write a specification for a sequential circuit
directly from the state transition diagram for the circuit. The state diagram
shown below is for a sequential comparator with two serial inputs, A and
B and two outputs G and L. There is also a reset input that disables the
circuit and causes it to go the 00 state when it is high. After reset drops, the
A and B inputs are interpreted as numerical values, with successive bits
presented on successive clock ticks, starting with the most significant bits.
The G and L outputs are low initially, but as soon as a difference is
detected between the two inputs, one or the other of G or L goes high.
Specifically, G goes high if A>B and L goes high if A<B. Notice that G and
L go high before the clock tick that causes the transition to the 10 and 01
states.

Here is a VHDL module that implements the comparator entity.
entity serialCompare is port(
 clk, reset: in std_logic;
 A, B : in std_logic; -- inputs to be compared
 G, L: out std_logic); -- G=1 => A>B, L=1 => A<B
end serialCompare;

architecture scArch is
signal state: std_logic_vector(1 downto 0);

Jonathan Turner

65

begin
 -- process that defines state transitions
 process (clk) begin
 if rising_edge(clk) then
 if reset = ‘1’ then
 state <= "00";
 else
 if state = "00" then
 if A > B then state <= "10";
 elsif A < B then state <= "01";
 end if;
 end if;
 end if;
 end process;

 -- process that defines the outputs
 process(A, B, state) begin
 G <= '0'; L <= '0';

 if (state="00" and A>B) or state = "10" then
 G <= '1';

 end if;
 if (state="00" and A<B) or state = "01" then
 L <= '1';
 end if;
 end process;
end scArch;

There are two processes in this specification. The first defines the state
transitions and starts with an if-statement containing a synchronization
condition. All assignments to the state signal occur within the scope of this
if-statement causing them to be synchronized to the rising edge of the clk
signal. We start the synchronized code segment by checking the status of
reset and putting the circuit into state “00” if reset is high. The rest of the
process controls the transition to the 10 or 01 states, depending on which

Designing Digital Circuits Using VHDL©

 66

of the two inputs is larger. Notice that there is no code for the “self-loops”
in the transition diagram, since these involve no change to the state signal.
The synthesizer will generate the appropriate logic to handle the “no-
change” conditions, but we need not write any explicit code for them.
Also note that the sensitivity list in the first process contains only the clock
signal. This is sufficient because signal changes only occur when clk
changes. So unlike a process specifying a purely combinational circuit,
there is no need to include the other signals that are used in the process.

The second process specifies the output signals G and L. Although it's
not essential to define the outputs in a separate process, it's generally
considered good practice to do so. Notice that this second process has no
synchronization condition and specifies a purely combinational sub-
circuit.

The VHDL synthesizer analyzes the two processes and determines that
the state signal must be stored in a pair of flip flops. It also determines the
logic equations needed to generate the next state and output values and
uses these to create the required circuit. The diagram below shows a
circuit that could be generated by the synthesizer from this specification.

The figure below shows the output of a simulation run for the serial
comparator. Notice that the changes to the state variable are synchronized
to the rising clock edges but the low-to-high transitions of G and L are not.

Jonathan Turner

67

VHDL allows us to define signals with enumerated types so that we can
associate meaningful names to values of signals. This is particularly useful
for naming the states of state machines, as illustrated below.

architecture scArch2 of serialCompare is
type stateType is (unknown, bigger, smaller);
signal state: stateType;
begin
 -- process that defines state transition
 process(clk) begin
 if rising_edge(clk) then
 if reset = '1' then
 state <= unknown;
 else
 if state = unknown then
 if A > B then state <= bigger;
 elsif A < B then state <= smaller;
 end if;
 end if;
 end if;
 end process;

Designing Digital Circuits Using VHDL©

 68

 -- code that defines the outputs
 G <= '1' when state = bigger or
 (state = unknown and A > B)
 else '0';
 L <= '1' when state = smaller or
 (state = unknown and A < B)
 else '0';
end scArch2;

In this version, we have also defined the outputs with two conditional
signal assignments, instead of a process. In situations where the outputs
are fairly simple, this coding style is preferable.

Counting Pulses
Next, we look at an example of a more complex sequential circuit that
combines a small control state machine with a register to count the
number of “pulses” observed in a serial input bit stream, where a pulse is
defined as one or more clock ticks when the input is low, followed by one
or more clock ticks when it is high, followed by one or more clock ticks
when it is low. In addition to the data input A, the circuit has a reset input,
which disables and re-initializes the circuit. The primary output of the
circuit is the value of a counter. There is also an error output which is high
if the input bit stream contains pulses than can be represented by the
counter. If the number of pulses observed exceeds the counter’s maximum
value, the counter “sticks” at the maximum value. The simplified state
transition diagram shown below does not explicitly include the reset logic,
which clears the counter and puts the circuit in the allOnes state. Also,
note that the counter value is not shown explicitly, since this would
require that the diagram include separate '”between'” and ”inPulse” states
for each of the distinct counter values. Instead, we simply show whether
the counter is incremented or not.

Jonathan Turner

69

Here is a VHDL module that implements the pulse counter. In this
example, we have introduced two constants, one for the word size and
another for the maximum number of pulses that we can count.

--
-- Count the # of pulses in the input bit stream.
-- A pulse is a 01...10 pattern.
--
-- A is the input bit stream
-- count is the number of pulses detected
-- errFlag is high if the number of pulses exceeds
-- the number of pulses counted exceeds the capacity
-- of count
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.commonConstants.all;

Designing Digital Circuits Using VHDL©

 70

entity countPulse is port (
 clk, reset: in std_logic;
 A: in std_logic;
 count: out std_logic_vector(wordSize-1 downto 0);
 errFlag: out std_logic);
end countPulse;
architecture a1 of countPulse is
type stateType is
 (allOnes, between, inPulse, errState);
signal state: stateType;
signal countReg:
 std_logic_vector(wordSize-1 downto 0);
begin
 process(clk) begin
 if rising_edge(clk) then
 if reset = '1' then
 countReg <= (others => '0');
 state <= allOnes;
 else
 case state is
 when allOnes =>
 if A = '0' then
 state <= between;
 end if;
 when between =>
 if A = '1' then
 state <= inPulse;
 end if;
 when inPulse =>
 if A = '0' and
 countReg /= maxPulse then
 countReg <= countReg + "1";
 state <= between;
 elsif A = '0' and
 countReg = maxPulse then
 state <= errState;
 end if;
 when others =>

Jonathan Turner

71

 end case;
 end if;
 end if;
 end process;
 count <= countReg;
 errFlag <= '1' when state = errState else '0';
end a1;

Notice that we have defined a countReg signal separate from the count
output signal because VHDL does not allow output signals to be used in
expressions. The standard way to get around this is to have an internal
signal that is used within the module and then assign the value of this
internal signal to the output signal. The countPulse circuit illustrates a
common characteristic of many sequential circuits. While strictly
speaking, the state of the circuit consists of both the state signal and the
value of countReg, the two serve somewhat different purposes. The state
signal keeps tack of the “control state” of the circuit while the countReg
variable holds the “data state”. We can generally simplify the state
transition diagram for a sequential circuit by representing only the control
state explicitly, while indicating the modifications to the data state as
though they were outputs to the circuit. This leads directly to a VHDL
representation based on the transition diagram.

Priority Queue
We finish this section with a larger sequential circuit that implements a
hardware priority queue. A priority queue maintains a set of (key,value)
pairs. Its primary output is called smallValue and it is equal to the value of
the pair that has the smallest key. So for example, if the priority queue
contained the pairs (2,7), (1,5) and (4,2) then the smallValue output would
be 5. There are two operations that can be performed on the priority
queue. An insert operation adds a new (key,value) pair to the set of stored

Designing Digital Circuits Using VHDL©

 72

pairs. A delete operation removes the (key,value) pair with the smallest key
from the set. The circuit has the following inputs.

clk the clock signal
reset initializes the circuit, discarding any stored values that may be

present
insert when high, it initiates an insert operation
delete when high, it initiates a delete operation; however if insert and

delete are high at the same time, the delete signal is ignored
key is the key part of a new (key,value) pair
value is the value part of a new (key,value) pair

The circuit has the following outputs, in addition to smallValue.

busy is high when the circuit is in the middle of performing an
operation; while busy is high, the insert and delete inputs are
ignored; the outputs are not required to have the correct values
when busy is high

empty is high when there are no pairs stored in the priority queue;
delete operations are ignored in this case

full is high when there is no room for any additional pairs to be
stored; insert operations are ignored in this case

The figure below shows a block diagram for one implementation of a
priority queue.

Jonathan Turner

73

In this design, there is a set of cells arranged in two rows. Each cell

contains two registers, one storing a key, the other storing a value. In
addition, there is a flip flop called dp, which stands for data present. This
bit is set for every block that contains a valid (key,value) pair. The circuit
maintains the set of stored pairs so that three properties are maintained.
 For adjacent pairs in the bottom row, the pair to the left has a key that

is less than or equal to that of the pair on the right.

 For pairs that are in the same column, the key of the pair in the bottom
row is less than or equal to that of the pair in the top row.

 In both rows, the empty blocks (those with dp=0) are to the right and
either both rows have the same number of empty blocks or the top row
has one more than the bottom row.

When these properties hold, the pair with the smallest key is in the
leftmost block of the bottom row. Using this organization, it is
straightforward to implement the insert and delete operations. To do an
insert, the (key,value) pairs in the top row are all shifted to the right one
position, allowing the new pair to be inserted in the leftmost block of the
top row. Then, within each column, the keys of the pairs in those columns
are compared, and if necessary, the pairs are swapped to maintain
properties 2 and 3. Note that the entire operation takes two steps. While it
is in progress, the busy output is high.

The delete operation is similar. First, the pairs in the bottom row are all
shifted to the left, effectively deleting the pair with the smallest key. Then,
for each column, the key values are compared and if necessary, the pairs
are swapped to maintain properties 2 and 3. Based on the third property,
we can determine if the priority queue is full by checking the rightmost dp
bit in the top row and we can determine if it is empty by checking the
leftmost dp bit in the bottom row. The complete state of this circuit

Designing Digital Circuits Using VHDL©

 74

includes all the values stored in all the registers, but we can express the
control state much more simply, as shown in the transition diagram
below.

This is a somewhat ideallized state transition diagram, but it captures the
essential behavior we want. In particular, the labels on the arrows indicate
the condition that causes the given transition to take place and any action
that should be performed at the same time. The variable top(rightmost).dp
refers to the rightmost data present flip flop in the top row and
bot(leftmost).dp refers to the leftmost data present flip flop in the bottom
row.

In the ready state, the circuit is between operations and waiting for the
next operation. If it gets an insert request and it is not full, it goes to the
inserting state and shifts the new (key,value) pair into the top row and shifts
the whole row right. From there it makes a transition back to the ready
state while doing a “compare & swap” between all vertical pairs.

If the circuit gets a delete request when it is in the ready state and is not
empty, it goes to the deleting state and shifts the bottom row to the left.
From there, it returns to the ready state, while performing a compare &
swap. A VHDL module implementing this design is shown below.

-- Priority Queue module implements a priority queue

Jonathan Turner

75

-- storing a set of (key,value) pairs.
--
-- When the priority queue is not empty, the output
-- smallValue is the value of a pair with the
-- smallest key. The empty and full outputs report
-- the status of the priority queue. The busy output
-- remains high while an insert or delete operation
-- is in progress. While it is high, new operation -
- requests are ignored
--
entity priQueue is port (
 clk, reset: in std_logic;
 insert, delete: in std_logic;
 key, value:
 in std_logic_vector(wordSize-1 downto 0);
 smallValue:
 out std_logic_vector(wordSize-1 downto 0);
 busy, empty, full : out std_logic);
end priQueue;

architecture pqArch of priQueue is
constant rowSize: integer := 4;
type pqElement is record
 dp: std_logic;
 key: std_logic_vector(wordSize-1 downto 0);
 value: std_logic_vector(wordSize-1 downto 0);
end record pqElement;
type rowTyp is array(0 to rowSize-1) of pqElement;
signal top, bot: rowTyp;
type state_type is (ready, inserting, deleting);
signal state: state_type;
begin
 process(clk) begin
 if rising_edge(clk) then

Designing Digital Circuits Using VHDL©

 76

 if reset = '1' then
 for i in 0 to rowSize-1 loop
 top(i).dp <= '0';
 bot(i).dp <= '0';
 end loop;
 state <= ready;
 elsif state = ready and insert = '1' then
 if top(rowSize-1).dp /= '1' then
 top(1 to rowSize-1) <=
 top(0 to rowSize-2);
 top(0) <= ('1',key,value);
 state <= inserting;
 end if;
 elsif state = ready and delete = '1' then
 if bot(0).dp /= '0' then
 bot(0 to rowSize-2) <=
 bot(1 to rowSize-1);
 bot(rowSize-1).dp <= '0';
 state <= deleting;
 end if;
 elsif state = inserting or
 state = deleting then
 for i in 0 to rowSize-1 loop
 if top(i).dp = '1' and
 (top(i).key < bot(i).key or
 bot(i).dp = '0') then
 bot(i) <= top(i);
 top(i) <= bot(i);
 end if;
 end loop;
 state <= ready;
 end if;
 end if;
 end process;
 smallValue <= bot(0).value when bot(0).dp = '1'
 else (others => '0');
 empty <= not bot(0).dp;
 full <= top(rowSize-1).dp;

Jonathan Turner

77

 busy <= '1' when state /= ready else '0';
end pqArch;

Sequential circuits can be used to build systems of great sophistication
and complexity. The challenge, to the designer is to manage that
complexity so as not to be overwhelmed by it. VHDL is one important tool
that can help in meeting the challenge, but to use it effectively, you need
to learn the common patterns that experience has shown are most useful
in expressing the functionality of digital systems. This section has
introduced some of the more useful patterns. You should study the
examples carefully to make sure you understand how they work and to
develop a familiarity with the patterns they follow.

Designing Digital Circuits Using VHDL©

 80

9. Still More Language Features

Variables

In addition to signals, VHDL supports a similar but different construct
called a “variable”, which has an associated variable assignment
statement, which uses a distinct assignment operation symbol (:=). We
have already seen a special case of variables, in the loop indexes used in
for-loops. However, we can also declare variables and use them in ways
that are similar to the way signals are used.

Unlike signals, variables do not correspond to wires or any other
physical element of a synthesized circuit. The best way to think of a
variable is as a short-hand notation representing the expression that was
most recently assigned to the variable in the program text. So for example,
the VHDL code fragment shown below with assignments to the variable y

a <= x"3a";
y := a + x"01";
b <= y;
y := y + x"10";
c <= y;

is exactly equivalent to the fragment

a <= x"3a";
b <= a + x"01";
c <= (a+x"01") + x"10";

Jonathan Turner

81

Note that unlike with signal assignments, successive assignments to
variables define different values; that is, following each variable
assignment, the variable name refers to the most recent assigned value.
Such uses of variables are not necessary, since we can always eliminate the
variables by replacing each occurrence of a variable with the variable-free
expression it represents. However, judicious use of variables can make
code easier to both write and to understand. For example, the code
fragment shown below implements an adder circuit, using a logic vector
to represent the carries joining stages together.

architecture a1 of adder is
signal C: std_logic_vector(wordSize downto 0);
begin
 process (A,B,C,Ci) begin
 C(0) <= Ci;
 for i in 0 to wordSize-1 loop
 S(i) <= A(i) xor B(i) xor C(i);
 C(i+1) <= (A(i) and B(i)) or
 ((A(i) xor B(i)) and C(i));
 end loop;
 Co <= C(wordSize);
 end process;
end a1;

When we introduced this example earlier, we pointed out that it was
important to define C to be a logic vector, rather than a simple signal.
However, we can re-write it using a variable for ''C'', making the code a
little simpler.

architecture a1 of adder is
variable C: std_logic;
begin
 process (A,B,C,Ci) begin
 C <= Ci;

Designing Digital Circuits Using VHDL©

 82

 for i in 0 to wordSize-1 loop
 S(i) <= A(i) xor B(i) xor C;
 C <= (A(i) and B(i)) or
 ((A(i) xor B(i)) and C);
 end loop;
 Co <= C;
 end process;
end a1;

To understand why this works, remember that the meaning of the for-
loop can be understood by unrolling the loop and substituting the
appropriate values for the loop index i. Thus, each variable assignment to
C will correspond to a different value of the loop index and when the
signal assignment for each value of S(i) is processed, it will substitute the
appropriate expression in place of the variable name C.

The behavior of variable assignments in VHDL is similar to the
behavior of variable assignments in conventional sequential programming
languages and distinctly different from the behavior of signal
assignments. However, the underlying mechanisms that lead to this
behavior are distinctly different, and this can lead to subtle differences.
While variable assignment in a conventional language corresponds to
updating a memory location in a computer’s memory, variable
assignment in VHDL corresponds to defining an abbreviation for
whatever expression appears on the right.

The use of both signals and variables in VHDL can be confusing,
especially at first. Indeed, while variables can be helpful, the fact that they
behave differently from signals can make code harder to understand,
rather than easier. You may prefer to limit your use of variables to
contexts where they can’t be avoided (like loop indexes), and this is
certainly a reasonable choice to make, since most uses of variables are not
really necessary. To reiterate, it’s generally best to think of a variable as
just a short-hand notation for the expression most recently assigned to the
variable name. Variables correspond to nothing physical in the
synthesized circuit, but they can simplify the specification of a circuit.

Jonathan Turner

83

Functions and Procedures
Like conventional programming languages, VHDL provides a subroutine
mechanism to allow you to encapsulate circuit components that are used
repeatedly in different contexts. The example below shows how a function
can be used to specify a circuit that select the larger of two input values.

function max(x,y: word) return word is
begin
 if x > y then return x; else return y; end if;
end function max;

This function can be implemented by the circuit shown below.

Given this declaration, we can write instantiate this circuit multiple times,
simply by referencing the function in an expression.

z <= max(q,max(r,s);

defines the circuit

Designing Digital Circuits Using VHDL©

 84

Note that a function can only specify a single output of the sub-circuit
it specifies (the return value). VHDL also defines procedures that allow one
to define sub-circuits with multiple outputs. Here is an example of a
procedure that compares an input value to a lower and upper bound and
outputs three signals, indicating whether the input value is within the
range defined by the two bounds, is above the range or below it.

procedure inRange(x: in word;
 inRange: out std_logic;
 tooHigh: out std_logic;
 tooLow: out std_logic) is
constant loBound: word := x"0005";
constant hiBound: word := x"0060";
begin
 tooLow := '0'; inRange := '0'; tooHigh := '0';
 if x < loBound then tooLow := '1';
 elsif x <= hiBound then inRange := '1';
 else tooHigh := '1';
 end if;
end procedure;

Note that the formal parameters to a function or procedure are variables,
not signals. This means that within a procedure, we must use the variable
assignment operator to assign values to its output parameters. When a
function or procedure is used, the input arguments may be signals, but the
output arguments must be declared as variables in the context where the
function or procedure is used. These variables may then be assigned to
signals.

Jonathan Turner

85

Functions and procedures can be important components of a larger
VHDL circuit design. They can eliminate much of the repetition that can
occur in larger designs, facilitate re-use of design elements developed by
others and can make large designs easier to understand and manage.

